Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Mol Pharm ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223839

RESUMO

Intracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization. We report here a new class of bismuth cyclized CPPs with excellent cytosolic entry efficiencies, proteolytic stability, and potential compatibility with genetic encoding and recombinant production.

2.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274936

RESUMO

One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.


Assuntos
Anti-Inflamatórios , Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Inflamação/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Protein Sci ; 33(10): e5170, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276009

RESUMO

The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.


Assuntos
Membrana Celular , Histona Desacetilases , Proteína 2 de Ligação a Metil-CpG , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Células HEK293 , Transporte Proteico , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética
4.
Microbiol Spectr ; 12(9): e0099724, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39105587

RESUMO

We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.


Assuntos
Antibacterianos , Peptídeos Penetradores de Células , Gonorreia , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Humanos , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Camundongos , Feminino , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ciclização , Lipopolissacarídeos/metabolismo , Arginina/farmacologia , Arginina/química
5.
Antibiotics (Basel) ; 13(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39200025

RESUMO

Cell-penetrating peptides (CPPs) are promising carriers to effectively transport antisense oligonucleotides (ASOs), including peptide nucleic acids (PNAs), into bacterial cells to combat multidrug-resistant bacterial infections, demonstrating significant therapeutic potential. Streptococcus suis, a Gram-positive bacterium, is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. In this study, through the combination of super-resolution structured illumination microscopy (SR-SIM), flow cytometry analysis, and toxicity analysis assays, we investigated the suitability of four CPPs for delivering PNAs into S. suis cells: HIV-1 TAT efficiently penetrated S. suis cells with low toxicity against S. suis; (RXR)4XB had high penetration efficiency with inherent toxicity against S. suis; (KFF)3K showed lower penetration efficiency than HIV-1 TAT and (RXR)4XB; K8 failed to penetrate S. suis cells. HIV-1 TAT-conjugated PNA specific for the essential gyrase A subunit gene (TAT-anti-gyrA PNA) effectively inhibited the growth of S. suis. TAT-anti-gyrA PNA exhibited a significant bactericidal effect on serotypes 2, 4, 5, 7, and 9 strains of S. suis, which are known to cause human infections. Our study demonstrates the potential of CPP-ASO conjugates as new antimicrobial compounds for combating S. suis infections. Furthermore, our findings demonstrate that applying SR-SIM and flow cytometry analysis provides a convenient, intuitive, and cost-effective approach to identifying suitable CPPs for delivering cargo molecules into bacterial cells.

6.
Bioorg Med Chem ; 111: 117871, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133977

RESUMO

Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.


Assuntos
Peptídeos Penetradores de Células , Endossomos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacologia , Humanos , Endossomos/metabolismo , DNA/química , Plasmídeos , Células HeLa
7.
Artigo em Inglês | MEDLINE | ID: mdl-39117921

RESUMO

Drug resistance in cancer poses a serious challenge in finding an effective remedy for cancer patients, because of the multitude of contributing factors influencing this complex phenomenon. One way to counter this problem is using a more targeted and dose-limiting approach for drug delivery, rather than relying on conventional therapies that exhibit multiple pernicious side-effects. Stability and specificity have traditionally been the core issues of peptide-based delivery vectors. In this study, we employed a structural regression modelling approach in the design, synthesis and characterization of a series of peptides that belong to approximately same topological cluster, yet with different electrostatic signatures encoded as a result of their differential positioning of amino acids in a given sequence. The peptides tagged with the fluorophore 5(6)-carboxyfluorescein, showed higher uptake in cancer cells with some of them colocalizing in the lysosomes. The peptides tagged with the anti-cancer drug methotrexate have displayed enhanced cytotoxicity and inducing apoptosis in triple-negative breast cancer cells. They also showed comparable uptake in side-population cells of lung cancer with stem-cell like properties. The most-optimized peptide showed accumulation in the tumor resulting in significant reduction of tumor size, compared to the untreated mice in in-vivo studies. Our results point to the following directives; (i) peptides can be design engineered for targeted delivery (ii) stereochemical engineering of peptide main chain can resist proteolytic enzymes and (iii) cellular penetration of peptides into cancer cells can be modulated by varying their electrostatic signatures.

8.
Heliyon ; 10(15): e35109, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170441

RESUMO

Oligoarginine cell-penetrating peptides (CPPs) are short peptides that can enhance drug delivery into cells and are of particular interest in ocular topical formulations for age-related macular degeneration (AMD) treatments. The length and structural characteristics of these peptides are considered crucial for drug delivery. This study investigates how oligoarginine length (Rn) affects their penetration mechanism, drug delivery capabilities, and antimicrobial properties, providing insights into their potential roles in AMD treatment delivery. In this study, oligoarginine peptides showed limited pore-forming abilities in a carboxyfluorescein-containing liposomal model, with R9 being the only oligoarginine length recording a significant pore-formation level. Their antibacterial efficacy depended on both the CPP length and bacterial class, with longer peptides exhibiting stronger antibacterial effects. Importantly, oligoarginine was found nontoxic to relevant mammalian cells for ocular delivery. The membrane translocation abilities of oligoarginine were consistent regardless of cargo presence. Additionally, cargo delivery by oligoarginine across in vitro cellular models for ocular delivery was dependent on peptide length and cell type, with longer chains being more effective at cargo uptake in a corneal epithelium cell line, and with shorter chains proving more effective for cargo delivery in a retinal epithelium cell line. This proposes that the chain length of oligoarginine could be used as a strategic tool in the formulation process to selectively target distinct regions of the eye. Overall, this study expands our understanding of how oligoarginine CPPs can be applied as penetration enhancers to improve the delivery of therapeutics in an ocular topical formulation within the clinical context of AMD.

9.
ACS Nano ; 18(34): 22752-22779, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39133564

RESUMO

Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.


Assuntos
Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Peptídeos , Proteínas , Humanos , Peptídeos/química , Barreira Hematoencefálica/metabolismo , Proteínas/química , Proteínas/administração & dosagem , Proteínas/metabolismo , Encéfalo/metabolismo , Animais , Nanopartículas/química , Portadores de Fármacos/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo
10.
ACS Appl Mater Interfaces ; 16(35): 46133-46144, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39166441

RESUMO

Selective imaging of specific subcellular structures provides valuable information about the cellular microenvironment. Materials exhibiting thermally activated delayed fluorescence (TADF) are rapidly emerging as metal-free probes with long-lived emission for intracellular time-gated imaging applications. Polymers incorporating TADF emitters can self-assemble into luminescent nanoparticles, termed polymer dots (Pdots), and this strategy enables them to circumvent the limitations of commercial organelle trackers and small molecule TADF emitters. In this study, diblock copolymers comprised of a hydrophilic block containing organelle-targeting monomers and a hydrophobic TADF-active block were synthesized by ring-opening metathesis polymerization (ROMP). Oxanorbornene-based monomers incorporating morpholine and triphenylphosphonium groups for lysosome and mitochondria targeting, respectively, were also synthesized. ROMP by sequential addition yielded well-defined diblock copolymers with dispersities <1.28. To analyze the effect of tuning the hydrophilic corona on cellular viability and uptake, we prepared Pdots with poly(ethylene glycol) (PEG) and bis-guanidinium (BGN) coronas, resulting in limited and efficient cellular uptake, respectively. Red-emissive Pdots with BGN-based coronas and organelle-targeting functionality were obtained with quantum yields up to 12% in water under air. Colocalization analysis confirmed that lysosome and mitochondria labeling in live HeLa cells was accomplished within 2 h of incubation, affording Pearson's correlation coefficients of 0.37 and 0.70, respectively. The potential application of these Pdots for time-resolved imaging is highlighted by a proof of concept using time-gated spectroscopy, which effectively separates the delayed emission of the TADF Pdots from the background autofluorescence of biological serum.


Assuntos
Polímeros , Humanos , Células HeLa , Polímeros/química , Mitocôndrias/metabolismo , Imagem Óptica , Lisossomos/metabolismo , Lisossomos/química , Organelas/química , Organelas/metabolismo , Pontos Quânticos/química , Corantes Fluorescentes/química , Nanopartículas/química , Temperatura , Polietilenoglicóis/química , Fluorescência
11.
Biochem Biophys Rep ; 39: 101777, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091698

RESUMO

Cell-penetrating peptides (CPPs) can enter the cytosol of eukaryotic cells without killing them whereas some CPPs exhibit antimicrobial activity against bacterial cells. Here, to elucidate the mode of interaction of the CPP nona-arginine (R9) with bacterial cells, we investigated the interactions of lissamine rhodamine B red-labeled peptide (Rh-R9) with single Escherichia coli cells encapsulating calcein using confocal laser scanning microscopy. After Rh-R9 induced the leakage of a large amount of calcein, the fluorescence intensity of the cytosol due to Rh-R9 greatly increased, indicating that Rh-R9 induces cell membrane damage, thus allowing entry of a significant amount of Rh-R9 into the cytosol. To determine if the lipid bilayer region of the membrane is the main target of Rh-R9, we then investigated the interaction of Rh-R9 with single giant unilamellar vesicles (GUVs) comprising an E. coli polar lipid extract containing small GUVs and AlexaFluor 647 hydrazide (AF647) in the lumen. Rh-R9 entered the GUV lumen without inducing AF647 leakage, but leakage eventually did occur, indicating that GUV membrane damage was induced after the entry of Rh-R9 into the GUV lumen. The Rh-R9 peptide concentration dependence of the fraction of entry of Rh-R9 after a specific interaction time was similar to that of the fraction of leaking GUVs. These results indicate that Rh-R9 can damage the lipid bilayer region of a cell membrane, which may be related to its antimicrobial activity.

12.
Biochem Pharmacol ; 229: 116471, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127152

RESUMO

Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.

13.
Pharmaceutics ; 16(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39065658

RESUMO

The lack of effective delivery systems has slowed the development of mitochondrial gene therapy. Delivery systems based on cell-penetrating peptides (CPPs) like the WRAP (tryptophan and arginine-rich peptide) family conjugated with a mitochondrial targeting sequence (MTS) have emerged as adequate carriers to mediate gene expression into the mitochondria. In this work, we performed the PEGylation of WRAP/pDNA nanocomplexes and compared them with previously analyzed nanocomplexes such as (KH)9/pDNA and CpMTP/pDNA. All nanocomplexes exhibited nearly homogeneous sizes between 100 and 350 nm in different environments. The developed complexes were biocompatible and hemocompatible to both human astrocytes and lung smooth muscle cells, ensuring in vivo safety. The nanocomplexes displayed mitochondria targeting ability, as through transfection they preferentially accumulate into the mitochondria of astrocytes and muscle cells to the detriment of cytosol and lysosomes. Moreover, the transfection of these cells with MTS-CPP/pDNA complexes produced significant levels of mitochondrial protein ND1, highlighting their efficient role as gene delivery carriers toward mitochondria. The positive obtained data pave the way for in vivo research. Using confocal microscopy, the cellular internalization capacity of these nanocomplexes in the zebrafish embryo model was assessed. The peptide-based nanocomplexes were easily internalized into zebrafish embryos, do not cause harmful or toxic effects, and do not affect zebrafish's normal development and growth. These promising results indicate that MTS-CPP complexes are stable nanosystems capable of internalizing in vivo models and do not present associated toxicity. This work, even at an early stage, offers good prospects for continued in vivo zebrafish research to evaluate the performance of nanocomplexes for mitochondrial gene therapy.

14.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999985

RESUMO

Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study.


Assuntos
Algoritmos , Peptídeos Penetradores de Células , Aprendizado de Máquina , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Humanos , Animais , Sequência de Aminoácidos , Venenos de Vespas/química , Proteoma
15.
Transl Res ; 272: 95-110, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38876188

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteômica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteômica/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Relevância Clínica
16.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893532

RESUMO

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Assuntos
Peptídeos Penetradores de Células , Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Animais , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
17.
Trends Plant Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38902122

RESUMO

Cell-penetrating peptides (CPPs) are short (typically 5-30 amino acids), cationic, amphipathic, or hydrophobic peptides that facilitate the cellular uptake of diverse cargo molecules by eukaryotic cells via direct translocation or endocytosis across the plasma membrane. CPPs can deliver a variety of bioactive cargos, including proteins, peptides, nucleic acids, and small molecules into the cell. Once inside, the delivered cargo may function in the cytosol, nucleus, or other subcellular compartments. Numerous CPPs have been used for studies and drug delivery in mammalian systems. Although CPPs have many potential uses in plant research and agriculture, the application of CPPs in plants remains limited. Here we review the structures and mechanisms of CPPs and highlight their potential applications for sustainable agriculture.

18.
Vaccine X ; 19: 100500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873639

RESUMO

Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.

19.
Pharmaceutics ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931896

RESUMO

In recent yearsjajajj, peptide-based therapeutics have attracted increasing interest as a potential approach to cancer treatment. Peptides are characterized by high specificity and low cytotoxicity, but they cannot be considered universal drugs for all types of cancer. Of the numerous anticancer-reported peptides, both natural and synthetic, only a few have reached clinical applications. However, in most cases, the mechanism behind the anticancer activity of the peptide is not fully understood. For this reason, in this work, we investigated the effect of the novel peptide ∆M4, which has documented anticancer activity, on two human skin cancer cell lines. A novel approach to studying the potential induction of apoptosis by anticancer peptides is the use of protein microarrays. The results of the apoptosis protein study demonstrated that both cell types, skin malignant melanoma (A375) and epidermoid carcinoma (A431), exhibited markers associated with apoptosis and cellular response to oxidative stress. Additionally, ∆M4 induced concentration- and time-dependent moderate ROS production, triggering a defensive response from the cells, which showed decreased activation of cytoplasmic superoxide dismutase. However, the studied cells exhibited a differential response in catalase activity, with A375 cells showing greater resistance to the peptide action, possibly mediated by the Nrf2 pathway. Nevertheless, both cell types showed moderate activity of caspases 3/7, suggesting that they may undergo partial apoptosis, although another pathway of programmed death cannot be excluded. Extended analysis of the mechanisms of action of anticancer peptides may help determine their effectiveness in overcoming chemoresistance in cancerous cells.

20.
Pharmaceutics ; 16(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931902

RESUMO

Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA