Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Ultrasound Med Biol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39107206

RESUMO

OBJECTIVE: Cell-based therapies have shown significant promise for treating many diseases, including cancer. Current cell therapy manufacturing processes primarily utilize viral transduction to insert genomic material into cells, which has limitations, including variable transduction efficiency and extended processing times. Non-viral transfection techniques are also limited by high variability or reduced molecular delivery efficiency. Novel 3D-printed acoustofluidic devices are in development to address these challenges by delivering biomolecules into cells within seconds via sonoporation. METHODS: In this study, we assessed biological parameters that influence the ultrasound-mediated delivery of fluorescent molecules (i.e., calcein and 150 kDa FITC-Dextran) to human T cells using flow cytometry and confocal imaging. RESULTS: Low cell plating densities (100,000 cells/mL) enhanced molecular delivery compared to higher cell plating densities (p < 0.001), even though cells were resuspended at equal concentrations for acoustofluidic processing. Additionally, cells in the S phase of the cell cycle had enhanced intracellular delivery compared to cells in the G2/M phase (p < 0.001) and G0/G1 phase (p < 0.01), while also maintaining higher viability compared to G0/G1 phase (p < 0.001). Furthermore, the calcium chelator (EGTA) decreased overall molecular delivery levels. Confocal imaging indicated that the actin cytoskeleton had important implications on plasma membrane recovery dynamics after sonoporation. In addition, confocal imaging indicates that acoustofluidic treatment can permeabilize the nuclear membrane, which could enable rapid intranuclear delivery of nucleic acids. CONCLUSIONS: The results of this study demonstrate that a 3D-printed acoustofluidic device can enhance molecular delivery to human T cells, which may enable improved techniques for non-viral processing of cell therapies.

2.
J Vitreoretin Dis ; 8(4): 410-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148570

RESUMO

Purpose: To evaluate the medical accuracy in discussions of stem cell therapy for retinal diseases on a social media internet forum (Reddit). Methods: A cross-sectional study assessed 11 Reddit forums and 411 unique comments from 2017 to 2022. Evaluated participants were all anonymous Reddit users. Discussions were independently examined for medical accuracy by a board-certified, fellowship-trained retina surgeon in active practice. Results: Reddit users self-identified mainly as prospective patients followed by research students and physicians or healthcare workers. Inquiries mostly regarded stem cell treatment for macular degeneration. Thirty-six percent of the forum's content was found to be inaccurate or misleading. When specifically considering factual comments, the inaccuracy rate increased to 54%. Identified gaps in knowledge mostly regarded the current state of the technology (25%) followed by misinterpretation of trial results (16%) and scam treatments (14%). Most inaccurate or misleading comments favored stem cell advancements (72%). Conclusions: This study highlights the gaps in knowledge and areas of medical misinformation regarding ocular stem cell therapies shared by individuals on Reddit.

3.
JOR Spine ; 7(3): e1347, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38947860

RESUMO

Over the past several decades, there has been a notable increase in the total number of spinal fusion procedures worldwide. Advanced spinal fusion techniques, surgical approaches, and new alternatives in grafting materials and implants, as well as autologous cellular therapies, have been widely employed for treating spinal diseases. While the potential of cellular therapies to yield better clinical results is appealing, supportive data are needed to confirm this claim. This meta-analysis aims to compare the radiographic and clinical outcomes between graft substitutes with autologous cell therapies and graft substitutes alone. PubMed, Scopus, Web of Science, ClinicalTrials.gov, and the Cochrane Central Register of Controlled Trials were searched for studies comparing graft substitutes with autologous cell therapies and graft substitutes alone up to February 2024. The risk of bias of the included studies was evaluated using the Downs and Black checklist. The following outcomes were extracted for comparison: fusion success, complications/adverse events, Visual Analog Scale (VAS) score, and Oswestry Disability Index (ODI) score. Thirteen studies involving 836 patients were included, with 7 studies considered for the meta-analysis. Results indicated that the use of graft substitutes with autologous cell therapies demonstrated higher fusion success rates at 3, 6, and 12 months, lower VAS score at 6 months, and lower ODI score at 3, 6, and 12 months. The complication rate was similar between graft substitutes with autologous cell therapies and graft substitutes alone. Although the current literature remains limited, this meta-analysis suggests that the incorporation of cellular therapies such as bone marrow and platelet derivatives with graft substitutes is associated with a higher fusion rate and significant improvements in functional status and pain following spinal fusion. Future well-designed randomized clinical trials are needed to definitively assess the clinical effectiveness of cellular therapies in spinal fusion.

4.
Immunooncol Technol ; 24: 100715, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39055165

RESUMO

Adoptive T-cell therapies (ACTs) including tumor-infiltrating lymphocytes and engineered T cells (transgenic T-cell receptor and chimeric antigen receptor T cells), have made an important impact in the field of cancer treatment over the past years. Most of these therapies are typically administered systemically in approaches that facilitate the elimination of hematologic malignancies. Therapeutical efficacy against solid tumors, however, with the exception of tumor-infiltrating lymphocytes against melanoma, remains limited due to several barriers preventing lymphocyte access to the tumor bed. Building upon the experience of regional administration in other immunotherapies, the regional administration of adoptive cell therapies is being assessed to overcome this challenge, granting a first round of access of the transferred T cells to the tumor niche and thereby ensuring their activation and expansion. Intralesional and intracavitary routes of delivery have been tested with promising antitumor objective responses in preclinical and clinical studies. Additionally, several strategies are being developed to further improve T-cell activity after reinfusing them back to the patient such as combinations with other immunotherapy agents or direct engineering of the transferred T cells, achieving long-term immune memory. Clinical trials testing different regional adoptive T-cell therapies are ongoing but some issues related to methodology of administration and correct selection of the target antigen to avoid on-target/off-tumor side-effects need to be further evaluated and improved. Herein, we discuss the current preclinical and clinical landscape of intratumoral and locoregional delivery of adoptive T-cell therapies.

5.
Cytotherapy ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39023463

RESUMO

BACKGROUND AIMS: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated genome editing (GE) components (e.g., nucleases, guide RNAs (gRNAs), and plasmids) are used to genetically modify cells during development of ex vivo genome-edited cell therapies. Prolonged presence of GE components may increase the risk of unintended genome modifications (e.g., off-target editing and chromosomal rearrangements). This risk is a function of the stability of the GE components, culture conditions (i.e., culture length, media changes, etc.), and the nature of the GE component (i.e., only plasmids can be integrated into a cell's genome). Testing for residual GE components on ex vivo genetically edited drug products is generally recommended in current regulatory guidance (CBER 2024). For allogenic cell therapies derived from induced pluripotent stem cells (iPSC), cells typically undergo clonal selection and extensive culturing following completion of genome editing. This post-engineering clonal selection substantially reduces the amount of residual GE components while the long-duration cell culture significantly reduces the presence of active residual GE components. Here we present a case in which the need for testing of the drug product for residual GE components has been eliminated. METHODS: In silico modeling was used to estimate clearance mechanisms across a variety of relevant assumptions, including disposition of extracellular GE components via media changes and dilution of intracellular GE components via cell expansion. Determining the ability of each GE component-alone or in complex with other GE components-to modify genomic material was assessed by a series of both in vitro and ex vivo (i.e., engineering cells) studies. For the in vitro studies, a DNA cutting assay was developed to assess the ability of the component to cut a representative DNA strand. For the ex vivo modification of cells, an assessment of the knock-out of the relevant gene was completed by flow cytometry specifically assessing the presence or absence of protein expression on the modified cells. The persistence and stability of GE components were examined under cell-mimicking conditions and in ex vivo modified cells. The components were stressed under multiple conditions mimicking a range of culture conditions and tested in the aforementioned DNA cutting assay. The presence of residual gRNA was directly assessed in the ex vivo modified cells via a gRNA-specific digital droplet polymerase chain reaction (ddPCR) assay. RESULTS: Simulations estimating genome editing residual clearance via dilution for extracellular residuals (via media changes) or intracellular residuals (via cell doubling) demonstrate clearance of measurable residuals within 28 days of cell culture. Studies simulating the stability of genome editing residuals estimate less than 7 days for the nuclease, gRNA and ribonucleoprotein (RNP) complex. gRNA was undetectable by 8 days post-engineering under actual engineering conditions. Additionally, without gRNA present, CRISPR Cas12a nucleases did not demonstrate evidence of cutting. In contrast, plasmid DNA can be randomly integrated into the genome and free plasmid is highly stable under cell culture-like conditions (50+ days). Additionally, plasmid DNA integrated in cells will propagate during mitosis, leading to the additional risk of expansion of an unintentional integration event. CONCLUSIONS: Both the gRNA and nuclease in the RNP complex are required for DNA cutting. Neither individual component nor the complex are stable beyond 7 days in culture-mimicking conditions. These findings suggest that the risk of unplanned genomic modification resulting from residual gRNA or nuclease is minimal for processes in which extensive culture is performed after the completion of genome editing and clonal selection. However, the risk of residual plasmid DNA integration is significantly higher regardless of the manufacturing process. The residual plasmid itself is quite stable (at least 50 days) and the risk of random, off-target integration is present. By establishing the stability of these components, we have demonstrated that testing for residual gRNA or nuclease is not warranted for clonally derived allogeneic cell therapies.

6.
Cytotherapy ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38958627

RESUMO

Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.

7.
Biomark Res ; 12(1): 71, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075601

RESUMO

Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.

8.
Int Immunopharmacol ; 139: 112713, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047451

RESUMO

Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.


Assuntos
Pé Diabético , Cicatrização , Humanos , Pé Diabético/terapia , Pé Diabético/imunologia , Animais
9.
Drug Discov Today ; 29(7): 104048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830504

RESUMO

Outcome-based reimbursement models are gaining attention for managing the clinical uncertainties and financial impact of gene and cell therapies. Little guidance exists on how such models can create win-win-win situations, benefiting health-care payers, health-technology developers and patients. Our innovative approach prospectively prioritizes therapies for which a 'window of opportunity' might occur through the analysis of health-technology assessments and product characteristics. Within this window, one size does not fit all, and depending on the extent of clinical uncertainty and potential added benefit levels, different win-win-win situations exist in the United States, the United Kingdom and the Netherlands. Dutch Horizon scanning data prioritized etranacogene dezaparvovec (Hemgenix) and mozafancogene autotemcel for their potential to benefit from outcome-based reimbursement models. These insights extend beyond gene and cell therapies, and could help to provide sustainable health care and patient access to innovative therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Países Baixos , Mecanismo de Reembolso , Avaliação da Tecnologia Biomédica , Reino Unido , Estados Unidos
10.
Intractable Rare Dis Res ; 13(2): 117-120, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38836180

RESUMO

Capitalizing on breakthroughs in reproductive genetics, the utilization of in vitro embryo culture and stem cell technologies heralds a transformative era in addressing global challenges posed by rare genetic diseases. These cutting-edge practices illuminate the intricacies of early human development, elucidate the mechanisms behind rare diseases, and guide the development of potential therapies. Balancing this remarkable innovation with necessary ethical considerations, these technologies have the potential to revolutionize the trajectory of rare genetic disorders, transforming the landscape of diagnosis, treatment, and genetic counseling while offering renewed hope for affected individuals and families worldwide.

11.
Biotechnol Bioeng ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867466

RESUMO

Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.

12.
J Law Med ; 31(1): 105-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761392

RESUMO

Stem cell therapies have emerged as a miracle cure that could treat diseases and conditions. The past decade has seen the rapid growth of private clinics in some nations, including Australia, offering stem cell treatments largely untested and unsupported by clinical trials. These putative treatments have caused adverse events, some of which were serious and even fatal. The unscrupulous businesses exploit vulnerable and desperate patients who falsely believe these unproven therapies are their only salvation to cure different illnesses and conditions. This article emphasises the importance of strict oversight to ensure that only safe stem cell products reach patients, given the largely vulnerable patient base and the magnitude of risks involved. It examines the effectiveness of Australia's regulatory environment governing stem cell therapies to restrict the advertisement of dangerous and unproven stem cell therapies and the enforceability of these measures.


Assuntos
Transplante de Células-Tronco , Humanos , Austrália , Transplante de Células-Tronco/legislação & jurisprudência , Regulamentação Governamental
13.
Transplant Cell Ther ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763416

RESUMO

Chimeric antigen receptor T cell therapy (CAR-T) and bispecific T cell engagers (TCE) for multiple myeloma (MM) are readily available at many large US medical centers. However, many potentially eligible patients may not be referred to the specialized centers administering these therapies. Perspectives regarding potential barriers for MM cellular therapy from referring-center oncologists (ROs) versus treating-center oncologists (TOs) have not been reported previously. We conducted TACTUM-23, a survey of US oncologists who treat MM, to identify perceived barriers to these cellular therapies. This 24-question survey, which focused on demographics and perceived barriers to CAR-T and TCE, was conducted between June and August 2023. Of 247 oncologists, 37 (15%) completed the survey including 26 (70%) TOs who prescribed both CAR-T and TCEs, 4 (11%) TOs who only prescribed TCEs, and 7 (19%) ROs who referred patients. The top RO-stated barrier to CAR-T was financial toxicity, while the top TO-stated barrier to CAR-T was leukapheresis/ manufacturing slot availability. The top RO-stated barrier to TCE was financial toxicity, while the top TO-stated barrier to TCE was the hospitalization requirement. In conclusion, financial concerns are perceived by ROs to be the top barrier to both CAR-T and TCEs in myeloma. In contrast, TOs perceive logistical concerns to be the top barrier. Interventions to lower financial toxicity during these therapies, and outreach to raise awareness of such interventions among ROs, are needed alongside strategies to streamline manufacturing (for CAR-T) and monitoring.

14.
Adv Healthc Mater ; : e2400586, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813869

RESUMO

Immune cell therapy (ICT) is a transformative approach used to treat a wide range of diseases including type 1 diabetes, sickle cell disease, disorders of the hematopoietic system, and certain forms of cancers. Despite excellent clinical successes, the scope of adoptively transferred immune cells is limited because of toxicities like cytokine release syndrome and immune effector cell-associated neurotoxicity in patients. Furthermore, reports suggest that such treatment can impact major organ systems including cardiac, renal, pulmonary, and hepatic systems in the long term. Additionally, adoptively transferred immune cells cannot achieve significant penetration into solid tissues, thus limiting their therapeutic potential. Recent studies suggest that biomaterial-assisted delivery of immune cells can address these challenges by reducing toxicity, improving localization, and maintaining desired phenotypes to eventually regain tissue function. In this review, recent efforts in the field of biomaterial-based immune cell delivery for the treatment of diseases, their pros and cons, and where these approaches stand in terms of clinical treatment are highlighted.

15.
Transplant Cell Ther ; 30(8): 776-787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762057

RESUMO

Genetically modified cell therapies (GMCT), particularly immune effector cells (IEC) such as chimeric receptor antigen (CAR) T cells, have shown promise in curing cancer and rare diseases after a single treatment course. Following close behind CAR T approvals are GMCT based on hematopoietic stem cells, such as products developed for hemoglobinopathies and other disorders. Academically sponsored GMCT products, often developed in academic centers without industry involvement, face challenges in sustaining access after completion of early phase studies when there is no commercial partner invested in completing registration trials for marketing applications. The American Society for Transplantation and Cellular Therapy (ASTCT) formed a task force named ACT To Sustain (Adoptive Cell Therapy to Sustain) to address the "valley of death" of academic GMCT products. This paper presents the task force's findings and considerations regarding financial sustainability of academically sponsored GMCT products in the absence of commercial development. We outline case scenarios illustrating barriers to maintaining access to promising GMCT developed by academic centers. The paper also delves into the current state of GMCT development, commercialization, and reimbursement, citing examples of abandoned products, cost estimates associated with GMCT manufacturing and real-world use of cost recovery. We propose potential solutions to address the financial, regulatory, and logistical challenges associated with sustaining access to academically sponsored GMCT products and to ensure that products with promising results do not languish in a "valley of death" due to financial or implementational barriers. The suggestions include aligning US Food and Drug Administration (FDA) designations with benefit coverage, allowing for cost recovery of certain products as a covered benefit, and engaging with regulators and policy makers to discuss alternative pathways for academic centers to provide access. We stress the importance of sustainable access to GMCT and call for collaborative efforts to develop regulatory pathways that support access to academically sponsored GMCT products.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/economia , Imunoterapia Adotiva/legislação & jurisprudência , Imunoterapia Adotiva/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/ética , Estados Unidos , Acessibilidade aos Serviços de Saúde , Receptores de Antígenos Quiméricos , United States Food and Drug Administration
16.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592154

RESUMO

Each year, the European Summer School on Stem Cell Biology and Regenerative Medicine (SCSS) attracts early-career researchers and actively practicing clinicians who specialise in stem cell and regenerative biology. The 16th edition of this influential course took place from 12th to 19th September 2023 on the charming Greek island of Spetses. Focusing on important concepts and recent advances in stem cells, the distinguished faculty included experts spanning the spectrum from fundamental research to clinical trials to market-approved therapies. Alongside an academically intensive programme that bridges the various contexts of stem cell research, delegates were encouraged to critically address relevant questions in stem cell biology and medicine, including broader societal implications. Here, we present a comprehensive overview and key highlights from the SCSS 2023.


Assuntos
Medicina Regenerativa , Células-Tronco , Humanos , Pesquisadores , Estações do Ano
17.
Value Health ; 27(8): 1149-1173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641057

RESUMO

OBJECTIVES: This study aimed to systematically review evidence on the cost-effectiveness of chimeric antigen receptor T-cell (CAR-T) therapies for patients with cancer. METHODS: Electronic databases were searched in October 2022 and updated in September 2023. Systematic reviews, health technology assessments, and economic evaluations that compared costs and effects of CAR-T therapy in patients with cancer were included. Two reviewers independently screened studies, extracted data, synthesized results, and critically appraised studies using the Philips checklist. Cost data were presented in 2022 US dollars. RESULTS: Our search yielded 1809 records, 47 of which were included. Most of included studies were cost-utility analysis, published between 2018 and 2023, and conducted in the United States. Tisagenlecleucel, axicabtagene ciloleucel, idecabtagene vicleucel, ciltacabtagene autoleucel, lisocabtagene maraleucel, brexucabtagene autoleucel, and relmacabtagene autoleucel were compared with various standard of care chemotherapies. The incremental cost-effectiveness ratio (ICER) for CAR-T therapies ranged from $9424 to $4 124 105 per quality-adjusted life-year (QALY) in adults and from $20 784 to $243 177 per QALY in pediatric patients. Incremental cost-effectiveness ratios were found to improve over longer time horizons or when an earlier cure point was assumed. Most studies failed to meet the Philips checklist due to a lack of head-to-head comparisons and uncertainty surrounding CAR-T costs and curative effects. CONCLUSIONS: CAR-T therapies were more expensive and generated more QALYs than comparators, but their cost-effectiveness was uncertain and dependent on patient population, cancer type, and model assumptions. This highlights the need for more nuanced economic evaluations and continued research to better understand the value of CAR-T therapies in diverse patient populations.


Assuntos
Análise Custo-Benefício , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/economia , Imunoterapia Adotiva/economia , Anos de Vida Ajustados por Qualidade de Vida , Neoplasias Hematológicas/terapia
19.
EBioMedicine ; 103: 105125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640834

RESUMO

We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.


Assuntos
Terapia Genética , Humanos , Terapia Genética/métodos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Cardiopatias/terapia , Cardiopatias/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Edição de Genes , Cardiologia/métodos , Transplante de Células-Tronco/métodos
20.
Cell Syst ; 15(4): 362-373.e7, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38554709

RESUMO

Predictive modeling of macromolecular recognition and protein-protein complementarity represents one of the cornerstones of biophysical sciences. However, such models are often hindered by the combinatorial complexity of interactions at the molecular interfaces. Exemplary of this problem is peptide presentation by the highly polymorphic major histocompatibility complex class I (MHC-I) molecule, a principal component of immune recognition. We developed human leukocyte antigen (HLA)-Inception, a deep biophysical convolutional neural network, which integrates molecular electrostatics to capture non-bonded interactions for predicting peptide binding motifs across 5,821 MHC-I alleles. These predictions of generated motifs correlate strongly with experimental peptide binding and presentation data. Beyond molecular interactions, the study demonstrates the application of predicted motifs in analyzing MHC-I allele associations with HIV disease progression and patient response to immune checkpoint inhibitors. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Eletricidade Estática , Ligação Proteica , Peptídeos/química , Antígenos HLA/genética , Antígenos HLA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA