Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 10(1): 72, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534858

RESUMO

Clinico-pathological correlation studies show that some otherwise healthy elderly individuals who never developed cognitive impairment harbor a burden of Alzheimer's disease lesions (plaques and tangles) that would be expected to result in dementia. In the absence of comorbidities explaining such discrepancies, there is a need to identify other brain changes that meaningfully contribute to the cognitive status of an individual in the face of such burdens of plaques and tangles. Glial inflammatory responses, a universal phenomenon in symptomatic AD, show robust association with degree of cognitive impairment, but their significance in early tau pathology stages and contribution to the trajectory of cognitive decline at an individual level remain widely unexplored. We studied 55 brains from individuals at intermediate stages of tau tangle pathology (Braak III-IV) with diverging antemortem cognition (demented vs. non-demented, here termed `resilient'), and age-matched cognitively normal controls (Braak 0-II). We conducted quantitative assessments of amyloid and tau lesions, cellular vulnerability markers, and glial phenotypes in temporal pole (Braak III-IV region) and visual cortex (Braak V-VI region) using artificial-intelligence based semiautomated quantifications. We found distinct glial responses with increased proinflammatory and decreased homeostatic markers, both in regions with tau tangles (temporal pole) and without overt tau deposits (visual cortex) in demented but not in resilient. These changes were significantly associated with markers of cortical cell damage. Similar phenotypic glial changes were detected in the white matter of demented but not resilient and were associated with higher burden of overlying cortical cellular damage in regions with and without tangles. Our data suggest that changes in glial phenotypes in cortical and subcortical regions represent an early phenomenon that precedes overt tau deposition and likely contributes to cell damage and loss of brain function predicting the cognitive status of individuals at intermediate stages of tau aggregate burden (Braak III-IV).


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Idoso , Doença de Alzheimer/patologia , Biomarcadores , Encéfalo/patologia , Cognição , Humanos , Emaranhados Neurofibrilares/patologia , Neuroglia/patologia , Fenótipo , Placa Amiloide/patologia , Proteínas tau/metabolismo
2.
J Biol Chem ; 298(5): 101890, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378132

RESUMO

The unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy. We hypothesized that covalent modification of surface-exposed cysteine (SEC) residues could simulate unfolded/misfolded proteins to activate the UPR, and that higher basal UPR levels in cancer cells would provide the necessary therapeutic window. To test this hypothesis, here we synthesized analogs that can covalently modify multiple SEC residues and evaluated them as UPR activators. We identified a spirocyclic dimer, SpiD7, and evaluated its effects on UPR activation signals, that is, XBP1 splicing, phosphorylation of eIF2α, and a decrease in ATF 6 levels, in normal and cancer cells, which were further confirmed by RNA-Seq analyses. We found that SpiD7 selectively induced caspase-mediated apoptosis in cancer cells, whereas normal cells exhibited robust XBP1 splicing, indicating adaptation to stress. Furthermore, SpiD7 inhibited the growth of high-grade serous carcinoma cell lines ~3-15-fold more potently than immortalized fallopian tube epithelial (paired normal control) cells and reduced clonogenic growth of high-grade serous carcinoma cell lines. Our results suggest that induction of the UPR by covalent modification of SEC residues represents a cancer cell vulnerability and can be exploited to discover novel therapeutics.


Assuntos
Apoptose , Carcinoma , Resposta a Proteínas não Dobradas , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos
3.
Microorganisms ; 8(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114165

RESUMO

HIV noninfectious comorbidities (NICMs) are a current healthcare challenge. The situation is further complicated as there are very few effective models that can be used for NICM research. Previous research has supported the use of the HIV-1 transgenic rat (HIV-1TGR) as a model for the study of HIV/AIDS. However, additional studies are needed to confirm whether this model has features that would support NICM research. A demonstration of the utility of the HIV-1TGR model would be to show that the HIV-1TGR has cellular receptors able to bind HIV proteins, as this would be relevant for the study of cell-specific tissue pathology. In fact, an increased frequency of HIV receptors on a specific cell type may increase tissue vulnerability since binding to HIV proteins would eventually result in cell dysfunction and death. Evidence suggests that observations of selective cellular vulnerability in this model are consistent with some specific tissue vulnerabilities seen in NICMs. We identified CXCR4-expressing cells in the brain, while specific markers for neuronal degeneration demonstrated that the same neural types were dying. We also confirm the presence of gp120 and Tat by immunocytochemistry in the spleen, as previously reported. However, we observed very rare positive cells in the brain. This underscores the point that gp120, which has been reported as detected in the sera and CSF, is a likely source to which these CXCR4-positive cells are exposed. This alternative appears more probable than the local production of gp120. Further studies may indicate some level of local production, but that will not eliminate the role of receptor-mediated pathology. The binding of gp120 to the CXCR4 receptor on neurons and other neural cell types in the HIV-1TGR can thus explain the phenomena of selective cell death. Selective cellular vulnerability may be a contributing factor to the development of NICMs. Our data indicate that the HIV-1TGR can be an effective model for the studies of HIV NICMs because of the difference in the regional expression of CXCR4 in rat tissues, thus leading to specific organ pathology. This also suggests that the model can be used in the development of therapeutic options.

4.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003568

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient's poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.

5.
Front Neurosci ; 14: 707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765211

RESUMO

The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.

6.
ACS Chem Neurosci ; 11(17): 2717-2727, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32667776

RESUMO

Among the brain cells, oligodendrocyte progenitor cells (OPCs) are the most vulnerable in response to hypoxic and ischemic insults, of which the mechanism remains unknown. Brain cells are known to import or export lactate via differentially expressed monocarboxylate transporters (MCTs) to maintain energy metabolism and pH homeostasis. The present study aims to determine the role of MCT1 in the high vulnerability of OPCs. Here we show that a mild ischemic condition equivalent to ischemic preconditioning caused detectable loss of OPCs. MCT1, which is primarily expressed in oligodendrocyte lineage cells including OPCs, was up-regulated immediately under oxygen-glucose deprivation (OGD) conditions. However, persistent hypoxia, but not hypoglycemia, inhibited the function of MCT1, leading to an intracellular lactate accumulation and acidosis in OPCs. Neurons, which express primarily MCT2, were able to export lactate and maintain an intracellular pH homeostasis under similar conditions. The results support that compromised lactate efflux resulting from hypoxia-induced dysfunction of MCT1 contributes to the high vulnerability of OPCs.


Assuntos
Células Precursoras de Oligodendrócitos , Simportadores , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Oligodendroglia , Estresse Fisiológico
7.
Connect Tissue Res ; 61(3-4): 360-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31937149

RESUMO

Chondrocytes, the resident cells in articular cartilage, carry the burden of producing and maintaining the extracellular matrix (ECM). However, as these cells have a low proliferative capacity and are not readily replaced, chondrocyte death due to extreme forces may contribute to the pathogenesis of osteoarthritis (OA) after injury or may inhibit healing after osteochondral transplantation, a restorative procedure for damaged cartilage that requires a series of mechanical impacts to insert the graft. Consequently, there is a need to understand what factors influence the vulnerability of in situ chondrocytes to mechanical trauma. To this end, the objective of this study was to investigate how altering cell volume by different means (hydrostatic pressure, uniaxial load, and osmotic challenge with and without inhibition of regulatory volume decrease) affects the vulnerability of in situ chondrocytes to extreme mechanical forces. Using a custom experimental platform enabling testing of viable and intact murine cartilage-on-bone explants, we established a strong correlation between chondrocyte volume and vulnerability to impact injury wherein reduced volume was protective. Moreover, we found that the volume-perturbing interventions did not affect cartilage ECM mechanical properties, suggesting that their effects on chondrocyte vulnerability occurred at the cellular level. The findings of this study offer new avenues for novel strategies aimed at preventing chondrocyte loss during osteochondral grafting or to halting the progression of cell death after a joint destabilizing injury.


Assuntos
Tamanho Celular , Condrócitos , Matriz Extracelular , Meniscos Tibiais , Lesões do Menisco Tibial , Animais , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Lesões do Menisco Tibial/metabolismo , Lesões do Menisco Tibial/patologia
8.
J Neurosci ; 39(10): 1892-1909, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626701

RESUMO

Emerging studies are providing compelling evidence that the pathogenesis of Huntington's disease (HD), a neurodegenerative disorder with frequent midlife onset, encompasses developmental components. Moreover, our previous studies using a hypomorphic model targeting huntingtin during the neurodevelopmental period indicated that loss-of-function mechanisms account for this pathogenic developmental component (Arteaga-Bracho et al., 2016). In the present study, we specifically ascertained the roles of subpallial lineage species in eliciting the previously observed HD-like phenotypes. Accordingly, we used the Cre-loxP system to conditionally ablate the murine huntingtin gene (Httflx) in cells expressing the subpallial patterning markers Gsx2 (Gsx2-Cre) or Nkx2.1 (Nkx2.1-Cre) in Httflx mice of both sexes. These genetic manipulations elicited anxiety-like behaviors, hyperkinetic locomotion, age-dependent motor deficits, and weight loss in both Httflx;Gsx2-Cre and Httflx;Nkx2.1-Cre mice. In addition, these strains displayed unique but complementary spatial patterns of basal ganglia degeneration that are strikingly reminiscent of those seen in human cases of HD. Furthermore, we observed early deficits of somatostatin-positive and Reelin-positive interneurons in both Htt subpallial null strains, as well as early increases of cholinergic interneurons, Foxp2+ arkypallidal neurons, and incipient deficits with age-dependent loss of parvalbumin-positive neurons in Httflx;Nkx2.1-Cre mice. Overall, our findings indicate that selective loss-of-huntingtin function in subpallial lineages differentially disrupts the number, complement, and survival of forebrain interneurons and globus pallidus GABAergic neurons, thereby leading to the development of key neurological hallmarks of HD during adult life. Our findings have important implications for the establishment and deployment of neural circuitries and the integrity of network reserve in health and disease.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a progressive degenerative disorder caused by aberrant trinucleotide expansion in the huntingtin gene. Mechanistically, this mutation involves both loss- and gain-of-function mechanisms affecting a broad array of cellular and molecular processes. Although huntingtin is widely expressed during adult life, the mutant protein only causes the demise of selective neuronal subtypes. The mechanisms accounting for this differential vulnerability remain elusive. In this study, we have demonstrated that loss-of-huntingtin function in subpallial lineages not only differentially disrupts distinct interneuron species early in life, but also leads to a pattern of neurological deficits that are reminiscent of HD. This work suggests that early disruption of selective neuronal subtypes may account for the profiles of enhanced regional cellular vulnerability to death in HD.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteína Huntingtina/fisiologia , Doença de Huntington/fisiopatologia , Interneurônios/fisiologia , Neurônios/fisiologia , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/patologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/patologia , Feminino , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/patologia , Proteína Huntingtina/genética , Doença de Huntington/patologia , Doença de Huntington/psicologia , Interneurônios/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/crescimento & desenvolvimento , Córtex Motor/patologia , Neurônios/ultraestrutura , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/patologia , Proteína Reelina
9.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084895

RESUMO

Salmonella targets and enters epithelial cells at permissive entry sites: some cells are more likely to be infected than others. However, the parameters that lead to host cell heterogeneity are not known. Here, we quantitatively characterized host cell vulnerability to Salmonella infection based on imaged parameters. We performed successive infections of the same host cell population followed by automated high-throughput microscopy and observed that infected cells have a higher probability of being reinfected. Establishing a predictive model, we identified two combined origins of host cell vulnerability: pathogen-induced cellular vulnerability emerging from Salmonella uptake and persisting at later stages of the infection and host cell-inherent vulnerability. We linked the host cell-inherent vulnerability with its morphological attributes, such as local cell crowding, and with host cell cholesterol content. This showed that the probability of Salmonella infection success can be forecast from morphological or molecular host cell parameters.


Assuntos
Salmonella typhimurium/fisiologia , Células CACO-2 , Sobrevivência Celular , Colesterol/metabolismo , Células HeLa , Humanos , Microscopia/métodos , Modelos Biológicos
10.
Brain ; 138(Pt 12): 3520-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510954

RESUMO

A long-standing mystery surrounding ataxia-telangiectasia is why it is mainly cerebellar neurons, Purkinje cells in particular, that appear vulnerable to ATM deficiency. Here we present data showing that 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic marker found at high levels in neurons, is substantially reduced in human ataxia-telangiectasia and Atm(-/-) mouse cerebellar Purkinje cells. We further show that TET1, an enzyme that converts 5-methylcytosine (5mC) to 5hmC, responds to DNA damage and manipulation of TET1 activity directly affects the DNA damage signalling and ATM-deficient neuronal cell cycle re-entry and death. Quantitative genome-wide analysis of 5hmC-containing sequences shows that in ATM deficiency there is a cerebellum- and Purkinje cell-specific shift in 5hmC enrichment in both regulatory elements and repeated sequences. Finally, we verify that TET1-mediated 5hmC production is linked to the degenerative process of Purkinje cells and behavioural deficits in Atm(-/-) mice. Taken together, the selective loss of 5hmC plays a critical role in driving Purkinje cell vulnerability in ATM deficiency.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patologia , Citosina/análogos & derivados , Epigênese Genética , Células de Purkinje/metabolismo , Células de Purkinje/patologia , 5-Metilcitosina/análogos & derivados , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Comportamento Animal/fisiologia , Células Cultivadas , Cerebelo/metabolismo , Citosina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA