Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 448: 160-171, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002558

RESUMO

Growth cone-mediated axonal outgrowth and accurate synaptic targeting are central to brain morphogenesis. Translocation of the growth cone necessitates mechanochemical regulation of cell-extracellular matrix interactions and the generation of propulsive traction forces onto the growth environment. However, the molecular mechanisms subserving force generation by growth cones remain poorly characterized. The formin family member, Fmn2, has been identified earlier as a regulator of growth cone motility. Here, we explore the mechanisms underlying Fmn2 function in the growth cone. Evaluation of multiple components of the adhesion complexes suggests that Fmn2 regulates point contact stability. Analysis of F-actin retrograde flow reveals that Fmn2 functions as a clutch molecule and mediates the coupling of the actin cytoskeleton to the growth substrate, via point contact adhesion complexes. Using traction force microscopy, we show that the Fmn2-mediated clutch function is necessary for the generation of traction stresses by neurons. Our findings suggest that Fmn2, a protein associated with neurodevelopmental and neurodegenerative disorders, is a key regulator of a molecular clutch activity and consequently motility of neuronal growth cones.


Assuntos
Forminas/genética , Cones de Crescimento , Proteínas Nucleares/genética , Actinas , Movimento Celular , Neurônios
2.
Elife ; 72018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30028294

RESUMO

We use the myotendinous junction of Drosophila flight muscles to explore why many integrin associated proteins (IAPs) are needed and how their function is coordinated. These muscles revealed new functions for IAPs not required for viability: Focal Adhesion Kinase (FAK), RSU1, tensin and vinculin. Genetic interactions demonstrated a balance between positive and negative activities, with vinculin and tensin positively regulating adhesion, while FAK inhibits elevation of integrin activity by tensin, and RSU1 keeps PINCH activity in check. The molecular composition of myofibril termini resolves into 4 distinct layers, one of which is built by a mechanotransduction cascade: vinculin facilitates mechanical opening of filamin, which works with the Arp2/3 activator WASH to build an actin-rich layer positioned between integrins and the first sarcomere. Thus, integration of IAP activity is needed to build the complex architecture of the myotendinous junction, linking the membrane anchor to the sarcomere.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Miofibrilas/metabolismo , Actinas/metabolismo , Animais , Epistasia Genética , Voo Animal , Músculos/metabolismo , Músculos/ultraestrutura , Mutação/genética , Fenótipo , Interferência de RNA , Sarcômeros/metabolismo , Vinculina/metabolismo
3.
Dev Cell ; 39(5): 611-625, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27923121

RESUMO

Tissue morphogenesis requires force-generating mechanisms to organize cells into complex structures. Although many such mechanisms have been characterized, we know little about how forces are integrated across developing tissues. We provide evidence that integrin-mediated cell-extracellular matrix (ECM) adhesion modulates the transmission of apically generated tension during dorsal closure (DC) in Drosophila. Integrin-containing adhesive structures resembling focal adhesions were identified on the basal surface of the amnioserosa (AS), an extraembryonic epithelium essential for DC. Genetic modulation of integrin-mediated adhesion results in defective DC. Quantitative image analysis and laser ablation experiments reveal that basal cell-ECM adhesions provide resistance to apical cell displacements and force transmission between neighboring cells in the AS. Finally, we provide evidence for integrin-dependent force transmission to the AS substrate. Overall, we find that integrins regulate force transmission within and between cells, thereby playing an essential role in transmitting tension in developing tissues.


Assuntos
Drosophila/embriologia , Animais , Animais Geneticamente Modificados , Fenômenos Biofísicos , Adesão Celular/fisiologia , Drosophila/citologia , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Matriz Extracelular/fisiologia , Adesões Focais/fisiologia , Integrinas/fisiologia , Modelos Biológicos , Morfogênese/fisiologia
4.
Exp Cell Res ; 336(2): 211-22, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26172215

RESUMO

The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate ß1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates ß1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-ß1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of ß1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-1 Reguladora de Fusão/metabolismo , Integrina beta1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Antígeno 12E7 , Adesão Celular , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Humanos , Fosforilação , Proteína Quinase C-alfa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Sinteninas/metabolismo
5.
Oncotarget ; 6(25): 21655-74, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26091349

RESUMO

The adhesion properties of cells are involved in tumor metastasis. Although KRS at the plasma membrane is shown important for cancer metastasis, additionally to canonical roles of cytosolic KRS in protein translation, how KRS and its downstream effectors promote the metastatic migration remains unexplored. Disseminative behaviors (an earlier metastatic process) of colon cancer cell spheroids embedded in 3D collagen gels were studied with regards to cell adhesion properties, and relevance in KRS(-/+) knocked-down animal and clinical colon cancer tissues. Time-lapse imaging revealed KRS-dependent cell dissemination from the spheroids, whereas KRS-suppressed spheroids remained static due to the absence of outbound movements supported by cell-extracellular matrix (ECM) adhesion. While keeping E-cadherin at the outward disseminative cells, KRS caused integrin-involved intracellular signaling for ERK/c-Jun, paxillin, and cell-ECM adhesion-mediated signaling to modulate traction force for crawling movement. KRS-suppressed spheroids became disseminative following ERK or paxillin re-expression. The KRS-dependent intracellular signaling activities correlated with the invasiveness in clinical colon tumor tissues and in KRS(-/+) knocked-down mice tissues. Collectively, these observations indicate that KRS at the plasma membrane plays new roles in metastatic migration as a signaling inducer, and causes intracellular signaling for cancer dissemination, involving cell-cell and cell-ECM adhesion, during KRS-mediated metastasis.


Assuntos
Colágeno Tipo I/metabolismo , Neoplasias do Colo/enzimologia , Lisina-tRNA Ligase/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Citosol/metabolismo , Matriz Extracelular/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Técnica Indireta de Fluorescência para Anticorpo , Células HCT116 , Humanos , Camundongos , Metástase Neoplásica , Paxilina/metabolismo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA