Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 104(2): 497-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37278092

RESUMO

A total of 40 specimens of the genus Schizothorax (Cyprinidae: Schizothoracinae), including 10 matured males, 19 matured females and 11 juveniles, were captured from the Kirong Tsangpo River in China, which is located in the southern slope of the Central Himalayas. These specimens are identified as Schizothorax richardsonii (Grey, 1832) based on morphological characters and molecular analyses using mitochondrial Cyt b gene sequences. The Kirong population of S. richardsonii is relatively isolated from other populations in the Himalayas and has low genetic diversity. This is the first record of the genus Schizothorax fish in rivers of the Central Himalayas in China. As S. richardsonii is a vulnerable species on the IUCN Red List, a protection plan should be conducted to reduce the impact of anthropogenic disturbance by monitoring the natural population dynamics and assessing the ecological determinants of its distribution.


Assuntos
Cyprinidae , Rios , Animais , Himalaia , Filogenia , China , Cyprinidae/genética
2.
Environ Monit Assess ; 195(6): 715, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221436

RESUMO

Climate change impact on the habitat distribution of umbrella species presents a critical threat to the entire regional ecosystem. This is further perilous if the species is economically important. Sal (Shorea robusta C.F. Gaertn.), a climax forest forming Central Himalayan tree species, is one of the most valuable timber species and provides several ecological services. Sal forests are under threat due to over-exploitation, habitat destruction, and climate change. Sal's poor natural regeneration and its unimodal density-diameter distribution in the region illustrate the peril to its habitat. We, modelled the current as well as future distribution of suitable sal habitats under different climate scenarios using 179 sal occurrence points and 8 bioclimatic environmental variables (non-collinear). The CMIP5-based RCP4.5 and CMIP6-based SSP245 climate models under 2041-2060 and 2061-2080 periods were used to predict the impact of climate change on sal's future potential distribution area. The niche model results predict the mean annual temperature and precipitation seasonality as the most influential sal habitat governing variables in the region. The current high suitability region for sal was 4.36% of the total geographic area, which shows a drastic decline to 1.31% and 0.07% under SSP245 for 2041-60 and 2061-80, respectively. The RCP-based models predicted more severe impact than SSP; however, both RCP and SSP models showed complete loss of high suitability regions and overall shift of species northwards in the Uttarakhand state. We could identify the current and future suitable habitats for conserving sal population through assisted regeneration and management of other regional issues.


Assuntos
Dipterocarpaceae , Ecossistema , Modelos Climáticos , Monitoramento Ambiental , Cloreto de Sódio , Sais
3.
Sci Total Environ ; 866: 161334, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36596417

RESUMO

The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005-March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December-January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 µg m-3 in July to 1.17 ± 0.80 µg m-3 in May with the annual average of 0.67 ± 0.63 µg m-3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March-May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 µgm-3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region.

4.
Sci Total Environ ; 655: 1207-1217, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577113

RESUMO

The studies on global pollutant mercury (Hg), which is of public concern due to its high toxicity and capacity to long-range transport via atmospheric circulation, is poorly characterized in wet deposition over the Nepal-Himalayas region. Therefore, in order to understand the concentration levels, spatial distribution and seasonal variation of total Hg, 333 precipitation samples were collected from south to north: Kathmandu (1314 m a.s.l.), Dhunche (2065 m a.s.l.), Dimsa (3078 m a.s.l.) and Gosainkunda (4417 m a.s.l.) characterized as urban, rural, remote forest and remote alpine sites, respectively, for over one-year period. The highest Hg concentration was found in Kathmandu comparable to the urban sites worldwide, and significantly lower concentrations at other three sites demonstrated similar levels as in rural and remote alpine sites worldwide. Higher wet deposition fluxes of 34.91 and 15.89 µg m-2 year-1 were found in Kathmandu and Dhunche respectively, due to higher precipitation amount. Clear and distinct seasonal differences were observed with higher concentrations in non-monsoon and lower values in monsoon periods due to less scavenging and high pollutant concentration loadings during the dry period. The positive correlation of Hg flux and precipitation amount with Hg concentration suggested that both precipitation amount and Hg concentration plays a vital role in Hg deposition in the central Himalayan region. Enrichment factor (EFHg) indicated that the anthropogenic emission sources play a significant role for Hg enrichment and a high ratio of EFmonsoon to EFnon-monsoon (>2.18) suggested that the anthropogenic atmospheric mercury could likely be long-range transported from south Asian regions to the Himalayas during the monsoon season. In addition, our results showed that the major ionic compositions (e.g., SO42-, NO3-, NH4+, K+, Ca2+) could influence Hg concentration in wet precipitation. The anthropogenic sources of Hg such as biomass and fossil fuel combustion, crustal aerosols may contribute to the Hg concentration in wet precipitation over the central Himalayas.

5.
Sci Bull (Beijing) ; 64(14): 1018-1023, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659801

RESUMO

Large tropical volcanic eruptions can cause short-term global cooling. However, little is known whether large tropical volcanic eruptions, like the one in Tambora/Indonesia in 1815, cause regional hydroclimatic anomalies. Using a tree-ring network of precisely dated Himalayan birch in the central Himalayas, we reconstructed variations in the regional pre-monsoon precipitation back to 1650 CE. A superposed epoch analysis indicates that the pre-monsoon regional droughts are associated with large tropical volcanic eruptions, appearing to have a strong influence on hydroclimatic conditions in the central Himalayas. In fact, the most severe drought since 1650 CE occurred after the Tambora eruption. These results suggest that dry conditions prior to monsoon in the central Himalayas were associated with explosive tropical volcanism. Prolonged La Niña events also correspond with persistent pre-monsoon droughts in the central Himalayas. Our results provide evidence that large tropical volcanic eruptions most likely induced severe droughts prior to monsoon in the central Himalayas.

6.
Glob Chang Biol ; 24(11): 5549-5559, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153361

RESUMO

Among forest ecosystems, the alpine treeline ecotone can be considered to be a simplified model to study global ecology and climate change. Alpine treelines are expected to shift upwards in response to global warming given that tree recruitment and growth are assumed to be mainly limited by low temperatures. However, little is known whether precipitation and temperature interact to drive long-term Himalayan treeline dynamics. Tree growth is affected by spring rainfall in the central Himalayan treelines, being good locations for testing if, in addition to temperature, precipitation mediates treeline dynamics. To test this hypothesis, we reconstructed spatiotemporal variations in treeline dynamics in 20 plots located at six alpine treeline sites, dominated by two tree species (birch, fir), and situated along an east-west precipitation gradient in the central Himalayas. Our reconstructions evidenced that treelines shifted upward in response to recent climate warming, but their shift rates were primarily mediated by spring precipitation. The rate of upward shift was higher in the wettest eastern Himalayas, suggesting that its ascent rate was facilitated by spring precipitation. The drying tendency in association with the recent warming trends observed in the central Himalayas, however, will likely hinder an upslope advancement of alpine treelines and promote downward treeline shifts if moisture availability crosses a critical minimum threshold. Our study highlights the complexity of plant responses to climate and the need to consider multiple climate factors when analyzing treeline dynamics.


Assuntos
Aquecimento Global , Dispersão Vegetal , Chuva , Árvores/fisiologia , Altitude , Nepal , Fatores de Tempo
7.
Environ Sci Pollut Res Int ; 24(31): 24454-24472, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28895029

RESUMO

In order to investigate the spatial and temporal variations of aerosols and its soluble chemical compositions of the data gap zone in the central Himalayan region, aerosol samples were collected at four sites. The sampling location were characterized by four different categories, such as urban (Bode), semi-urban site in the northern Indo-Gangetic Plain (Lumbini), rural (Dhunche), and semiarid rural (Jomsom). A total of 230 aerosol samples were collected from four representative sites for a yearlong period and analyzed for water-soluble inorganic ions (WSIIs). The annual average aerosol mass concentration followed the sequence as Bode (238.24 ± 162.24 µg/m3)> Lumbini (161.14 ± 105.95 µg/m3)> Dhunche (112.40 ± 40.30 µg/m3)> Jomsom (78.85 ± 34.28 µg/m3), suggesting heavier particulate pollution in the urban and semi-urban sites. The total soluble ions contributed to 12.61-28.19% of TSP aerosol mass. The results revealed that SO42- and NO3- were the major anion and Ca2+ and NH4+ were the major cation influencing the aerosol composition over the central Himalayas. Calcium played a major role in neutralizing aerosol acidity followed by NH4+ at all the sites. The major compound of aerosol was (NH4)2SO4 and NH4HSO4 in the central Himalayas. Clear seasonality was observed at three observation sites, with higher concentrations during non-monsoon (dry periods) and lower during monsoon (wet period), suggesting washing out of aerosol particles by heavy precipitation during monsoon. In contrast, semiarid sites did not show the clear seasonal trend due to limited precipitation. Stationary sources were predominant over the mobile sources mostly in the remote sites. Principal component analysis confirmed that the major sources of WSIIs in the region were industrial emissions, fossil fuel and biomass burning, and crustal fugitive dusts. Nevertheless, transboundary aerosol transport over the region from polluted cities from south Asia could not be ignored as indicated by the clusters of air mass backward trajectory analysis.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Meio Ambiente , Monitoramento Ambiental , Ânions/análise , Cátions/análise , Concentração de Íons de Hidrogênio , Nepal , Estações do Ano , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA