RESUMO
Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.
RESUMO
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d17:1/C20â¼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d18:1-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d18:1/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Esfingolipídeos , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Fatores de Transcrição Forkhead , Longevidade , Estresse Oxidativo , Oxirredutases/metabolismo , Oxirredutases/genética , Espécies Reativas de Oxigênio/metabolismo , Esfingolipídeos/metabolismo , Estresse FisiológicoRESUMO
BACKGROUND: Hepatocyte lipotoxicity mediated by sphingolipids was considered one of important factors in NAFLD development. Knocking out key enzymes for sphingolipids synthesis, such as DES-1, SPHK1 and CerS6, could reduce hepatocyte lipotoxicity and improve NAFLD progression. Previous studies showed that roles of CerS5 and CerS6 in sphingolipids metabolism were similar, but the role of CerS5 was controversial in NAFLD development. This study aimed to clarify the role and mechanism of CerS5 in NAFLD development. METHODS: Hepatocyte conditional CerS5 knockout (CerS5 CKO) and wild type (WT) mice were fed with standard control diet (SC) and choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) and then divided into four groups: CerS5 CKO-SC, CerS5 CKO-CDAHFD, WT-SC and WT-CDAHFD. RT-PCR, IHC and WB were used to analyze the expression of inflammatory, fibrosis and bile acids (BA) metabolism factors. RNA-seq was used to analyze differences of transcriptional levels of liver molecules among the four groups. Metabolomics was used to measured differences of hepatic BAs among the four groups. RESULTS: Hepatocyte specific knockout of CerS5 did not increase or reduce the severity of 8-weeks CDAHFD induced hepatic steatosis and inflammation, but significantly worsened the progression of liver fibrosis in these mice. At the molecular level, hepatocyte specific knockout of CerS5 did not increase or reduce expression of hepatic inflammatory factors: CD68, F4/80 and MCP-1, but increased expression of hepatic fibrosis factors: α-SMA, COL1α and TGF-ß in mice fed with CDAHFD. Transcriptome analysis showed that hepatocyte specific knockout of CerS5 significantly decreased the expression of hepatic cyp27a1, and decreased expression of cyp27a1 was further validated by RT-PCR and WB. Considering that cyp27a1 was a key enzyme in the alternative pathway of BA synthesis, we further found that hepatic BA pools in CerS5 CKO mice were more conducive to the progression of liver fibrosis, which were characterized by elevated hydrophobic 12α-OH BAs and decreased hydrophilic non-12α-OH BAs. CONCLUSION: CerS5 played an important role in the progression of NAFLD related fibrosis, and hepatocyte specific knockout of CerS5 accelerated the progression of NAFLD related fibrosis, which was possibly due to the inhibition of BA synthesis alternative pathway by knocking out hepatocyte CerS5.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Ceramide synthases (CSs) produce ceramides from long-chain bases (LCBs). However, how CSs regulate immunity and cell death in Arabidopsis thaliana remains unclear. Here, we decipher the roles of two classes of CS, CSI (LAG1 HOMOLOG 2, LOH2) and CSII (LOH1/3), in these processes. The loh1-2 and loh1-1 loh3-1 mutants were resistant to the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) DG3 and exhibited programmed cell death (PCD), along with increased LCBs and ceramides, at later stages. In loh1-2, the Psm resistance, PCD, and sphingolipid accumulation were mostly suppressed by inactivation of the lipase-like proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4), and partly suppressed by loss of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2). The LOH1 inhibitor fumonisin B1 (FB1) triggered EDS1/PAD4-independent LCB accumulation, and EDS1/PAD4-dependent cell death, resistance to Psm, and C16 Cer accumulation. Loss of LOH2 enhances FB1-, and sphinganine-induced PCD, indicating that CSI negatively regulates the signaling triggered by CSII inhibition. Like Cer, LCBs mediate cell death and immunity signaling, partly through the EDS1/PAD4 pathway. Our results show that the two classes of ceramide synthases differentially regulate EDS1/PAD4-dependent PCD and immunity via subtle control of LCBs and Cers in Arabidopsis.
RESUMO
Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases , Fenótipo , Ácido Salicílico/metabolismo , Esfingolipídeos/metabolismoRESUMO
Many lipids, including sphingolipids, are essential components of the nervous system. Sphingolipids play critical roles in maintaining the membrane structure and integrity and in cell signaling. We used a multi-dimensional mass spectrometry-based shotgun lipidomics platform to selectively analyze the lipid species profiles of ceramide, sphingomyelin, cerebroside, and sulfatide; these four classes of sphingolipids are found in the central nervous system (CNS) (the cerebrum, brain stem, and spinal cord) and peripheral nervous system (PNS) (the sciatic nerve) tissues of young adult wild-type mice. Our results revealed that the lipid species profiles of the four sphingolipid classes in the different nervous tissues were highly distinct. In addition, the mRNA expression of sphingolipid metabolism genes-including the ceramidase synthases that specifically acylate the N-acyl chain of ceramide species and sphingomyelinases that cleave sphingomyelins generating ceramides-were analyzed in the mouse cerebrum and spinal cord tissue in order to better understand the sphingolipid profile differences observed between these nervous tissues. We found that the distinct profiles of the determined sphingolipids were consistent with the high selectivity of ceramide synthases and provided a potential mechanism to explain region-specific CNS ceramide and sphingomyelin levels. In conclusion, we portray for the first time a lipidomics atlas of select sphingolipids in multiple nervous system regions and believe that this type of knowledge could be very useful for better understanding the role of this lipid category in the nervous system.
Assuntos
Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Animais , Atlas como Assunto , Sistema Nervoso Central/metabolismo , Ceramidas/metabolismo , Cerebrosídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Esfingomielinas/metabolismo , Medula Espinal/metabolismo , Sulfoglicoesfingolipídeos/metabolismoRESUMO
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Assuntos
Ceramidas/biossíntese , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Pirrolidinas/química , Sulfonas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Compostos de Dansil/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Humanos , Metanol/química , Esfingosina/metabolismo , Especificidade por Substrato , SuínosRESUMO
CerSs (ceramide synthases), a group of enzymes that catalyze the formation of ceramides from sphingoid base and acyl-CoA substrates. As far, six types of CerSs (CerS1-CerS6) have been found in mammals. Each of these enzymes have unique characteristics, but maybe more noteworthy is the ability of individual CerS isoform to produce a ceramide with a characteristic acyl chain distribution. As key regulators of sphingolipid metabolism, CerSs highlight their unique characteristics and have emerging roles in regulating programmed cell death, cancer and many other aspects of biology. However, the role of CerSs in lung cancer has not been fully elucidated. In this study, there was no significant change in the sequence or copy number of CerSs gene, which could explain the stability of malignant tumor development through COSMIC database. In addition, gene expression in lung cancer was examined using the OncomineTM database, and the prognostic value of each gene in non-small cell lung cancer (NSCLC) was analyzed by Kaplan-Meier analysis. The results showed that high mRNA expression levels of CerS2, CerS3, CerS4 and CerS5 in all NSCLC patients were associated with improved prognosis. Among them, CerS2 and CerS5 are also highly expressed in adenocarcinoma (Ade), but not in squamous cell carcinoma (SCC). In contrast, high or low expression of CerS1 and CerS6 no difference was observed in patients with NSCLC, Ade and SCC. Integrated the data of this study suggested that these CerSs may be a potential tumor markers or drug target of new research direction.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Ceramidas , Humanos , Neoplasias Pulmonares/genética , PrognósticoRESUMO
Ceramide synthases (CERSs) catalyse an N-acyltransferase reaction using long-chain base (LCB) and fatty acyl-coenzyme A (CoA) as substrates to synthesize ceramide (Cer), which is the backbone of all complex sphingolipids. In the present study, three CERSs (LAG1, LAG2 and LAG3) form Ganoderma lucidum were analysed. The silencing of lag1 by RNA interference reduced ganoderic acid biosynthesis and Cer and complex sphingolipids contents, which contain long-chain-fatty-acids (LCFAs, including C16 and C18). In contrast, the silencing of lag2 or lag3 did not result in obvious phenotypic and sphingolipid homeostasis changes, although the lag2/lag3 double-silenced mutants exhibited increased ganoderic acid biosynthesis as well as reduced growth, reduced Cer and complex sphingolipids contents, which contain very-long-chain fatty acids (VLCFAs, including C22, C24 and C26). The results of the present study indicate that the three assayed CERSs have distinct physiological functions and substrate specificities in G. lucidum.
Assuntos
Reishi , Ceramidas , Homeostase , Esfingolipídeos , TriterpenosRESUMO
Loss of skeletal muscle mass is one of the most widespread and deleterious processes in aging humans. However, the mechanistic metabolic principles remain poorly understood. In the framework of a multi-organ investigation of age-associated changes of ceramide species, a unique and distinctive change pattern of C16:0 and C18:0 ceramide species was detected in aged skeletal muscle. Consistently, the expression of CerS1 and CerS5 mRNA, encoding the ceramide synthases (CerS) with substrate preference for C16:0 and C18:0 acyl chains, respectively, was down-regulated in skeletal muscle of aged mice. Similarly, an age-dependent decline of both CerS1 and CerS5 mRNA expression was observed in skeletal muscle biopsies of humans. Moreover, CerS1 and CerS5 mRNA expression was also reduced in muscle biopsies from patients in advanced stage of chronic heart failure (CHF) suffering from muscle wasting and frailty. The possible impact of CerS1 and CerS5 on muscle function was addressed by reversed genetic analysis using CerS1Δ/Δ and CerS5Δ/Δ knockout mice. Skeletal muscle from mice deficient of either CerS1 or CerS5 showed reduced caliber sizes of both slow (type 1) and fast (type 2) muscle fibers, fiber grouping, and fiber switch to type 1 fibers. Moreover, CerS1- and CerS5-deficient mice exhibited reduced twitch and tetanus forces of musculus extensor digitorum longus. The findings of this study link CerS1 and CerS5 to histopathological changes and functional impairment of skeletal muscle in mice that might also play a functional role for the aging skeletal muscle and for age-related muscle wasting disorders in humans.
Assuntos
Ceramidas/metabolismo , Resistência à Insulina/genética , Adulto , Envelhecimento , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Adulto JovemRESUMO
Serine palmitoyltranferase (SPT) is a pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of de novo synthesis of sphingolipids. SPT activity is homeostatically regulated in response to increased levels of sphingolipids. This homeostatic regulation of SPT is mediated through small ER membrane proteins termed the ORMDLs. Here we describe a procedure to assay ORMDL dependent lipid inhibition of SPT activity. The assay of SPT activity using radiolabeled L-serine was developed from the procedure established by the Hornemann laboratory. The activity of SPT can also be measured using deuterated L-serine but it requires mass spectrometry, which consumes money, time and instrumentation. The ORMDL dependent lipid inhibition of SPT activity can be studied in both cells and in a cell free system. This assay procedure is applicable to any type of mammalian cell. Here we provide the detailed protocol to measure SPT activity in the presence of either short chain (C8-ceramide) or long chain ceramide (C24-ceramide). One of the greatest advantages of this protocol is the ability to test insoluble long chain ceramides. We accomplished this by generating long chain ceramide through endogenous ceramide synthase by providing exogenous sphingosine and 24:1 acyl CoA in HeLa cell membranes. This SPT assay procedure is simple and easy to perform and does not require sophisticated instruments.
RESUMO
LAG1 was the first longevity assurance gene discovered in Saccharomyces cerevisiae The Lag1 protein is a ceramide synthase and its homolog, Lac1, has a similar enzymatic function but no role in aging. Lag1 and Lac1 lie in an enzymatic branch point of the sphingolipid pathway that is interconnected by the activity of the C4 hydroxylase, Sur2. By uncoupling the enzymatic branch point and using lipidomic mass spectrometry, metabolic labeling and in vitro assays we show that Lag1 preferentially synthesizes phyto-sphingolipids. Using photo-bleaching experiments we show that Lag1 is uniquely required for the establishment of a lateral diffusion barrier in the nuclear envelope, which depends on phytoceramide. Given the role of this diffusion barrier in the retention of aging factors in the mother cell, we suggest that the different specificities of the two ceramide synthases, and the specific effect of Lag1 on asymmetrical inheritance, may explain why Δlag1 cells have an increased lifespan while Δlac1 cells do not.
Assuntos
Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/genética , Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ceramidas/metabolismo , Lipoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Esfingolipídeos/metabolismoRESUMO
Ceramides are sphingolipids and integral components of the eukaryotic cell membrane. Apart from providing structural integrity, ceramides have also been shown to act as second messengers in cell signaling processes. In recent publications, ceramide modulation has been reported in pathological conditions such as cancer, diabetes, Alzheimer's disease (AD), coronary artery disease (CAD), multiple sclerosis (MS), as well as depression. Ceramides or ceramide panel combinations have been proposed as specific disease biomarkers that could be detected in diseased tissue, synovial fluid, cerebrospinal fluid (CSF), and blood. This article reviews ceramide modulation in a selection of different diseases and the potential use of ceramides as biomarkers in diagnostics, determination of disease stage and personalized medicine.
Assuntos
Biomarcadores/sangue , Biomarcadores/metabolismo , Ceramidas/sangue , Ceramidas/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Depressão/sangue , Depressão/metabolismo , Humanos , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismo , Transdução de SinaisRESUMO
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Assuntos
Oxirredutases/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Epigenômica , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Obesidade/metabolismo , Obesidade/patologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esfingolipídeos/metabolismoRESUMO
K(Ca) 1.1 regulates smooth muscle contractility by modulating membrane potential, and age-associated changes in K(Ca) 1.1 expression may contribute to the development of motility disorders of the gastrointestinal tract. Sphingolipids (SLs) are important structural components of cellular membranes whose altered composition may affect K(Ca) 1.1 expression. Thus, in this study, we examined whether altered SL composition due to aging may affect the contractility of gastric smooth muscle (GSM). We studied changes in ceramide synthases (CerS) and SL levels in the GSM of mice of varying ages and compared them with those in young CerS2-null mice. The levels of C16- and C18-ceramides, sphinganine, sphingosine, and sphingosine 1-phosphate were increased, and levels of C22, C24:1 and C24 ceramides were decreased in the GSM of both aged wild-type and young CerS2-null mice. The altered SL composition upregulated K(Ca) 1.1 and increased K(Ca) 1.1 currents, while no change was observed in K(Ca) 1.1 channel activity. The upregulation of KC a 1.1 impaired intracellular Ca²âºmobilization and decreased phosphorylated myosin light chain levels, causing GSM contractile dysfunction. Additionally, phosphoinositide 3-kinase, protein kinase Cζ , c-Jun N-terminal kinases, and nuclear factor kappa-B were found to be involved in K(Ca) 1.1 upregulation. Our findings suggest that age-associated changes in SL composition or CerS2 ablation upregulate K(Ca) 1.1 via the phosphoinositide 3-kinase/protein kinase Cζ /c-Jun N-terminal kinases/nuclear factor kappa-B-mediated pathway and impair Ca²âº mobilization, which thereby induces the contractile dysfunction of GSM. CerS2-null mice exhibited similar effects to aged wild-type mice; therefore, CerS2-null mouse models may be utilized for investigating the pathogenesis of aging-associated motility disorders.
Assuntos
Envelhecimento/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Esfingolipídeos/metabolismo , Animais , Células Cultivadas , Ceramidas/metabolismo , Mucosa Gástrica/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Esfingosina N-Aciltransferase/genética , Estômago/patologia , Ativação TranscricionalRESUMO
Ceramide synthases (CerSs) also known as Longevity Assurance (LASS) genes belong to a family of six related genes. CerS gene products have been shown to produce ceramide, hence their name CerSs. Ceramide is a bio-effector molecule, belonging to the family of sphingolipids (SLs), which are important components of cell membranes, and has been implicated in cancer and apoptosis. Cancer still remains the second leading cause of death, both globally and in South Africa. The proper regulation of the balance between cell growth and cell death is essential for cellular homeostasis. Failure to properly regulate this balance may lead to pathologic conditions such as cancer development. CerSs have been implicated in cancer biology, especially in apoptosis, through the action of ceramide. Although knowledge of the role that CerSs play in cancer biology is advancing, the precise roles of distinct CerSs in different cancers are not yet fully understood, especially the roles of CerS4 and CerS5 in endometrial and colon cancers. The aim of this study was to investigate the link of CerS4 and CerS5 in apoptosis and, thus in cancers of the endometrium and colon, which are amongst the most prevalent cancers globally. Apoptosis was induced using anastrozole in endometrial cells and 5-FU in colon cells. Fluorescence activated cell sorting was used to analyse and quantify apoptosis and total RNA was extracted from both treated and untreated cells. Quantitative relative expression of CerS4 and CerS5 mRNA was then determined in all cells (treated and untreated), normalised to ß-actin. Bio-informatics was used to compare CerS4 and CerS5 sequences. The endometrial cancer cells were more prone to apoptosis compared to their non-cancerous counterparts, while the colon cancer cells were more responsive to apoptosis induction after 48h, especially the HT-29 cells. Using quantitative real-time PCR, both CerS4 and CerS5 were shown to be up-regulated in endometrial and colon cancer cells. Apoptosis induction resulted in down-regulation of CerS4 and CerS5 in endometrial and colon cancers. These findings implicate these genes in cancer and apoptosis. Whether these genes play pro- or anti-apoptotic roles in cancers of the endometrium and colon is not conclusive at this stage. It may also be possible that these genes could exert opposing roles in the same or different tissues. Targeting this family of genes and understanding their precise individual roles in different types of cancer, are a promising therapeutic tool to new anti-cancer drug discovery or improving existing treatments.
Assuntos
Apoptose , Neoplasias do Colo/metabolismo , Neoplasias do Endométrio/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Sequência de Aminoácidos , Células CACO-2 , Regulação para Baixo , Feminino , Células HT29 , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingosina N-Aciltransferase/genéticaRESUMO
Ceramide (Cer) is involved in the regulation of several cellular processes by mechanisms that depend on Cer-induced changes on membrane biophysical properties. Accumulating evidence shows that Cers with different N-acyl chain composition differentially impact cell physiology, which may in part be due to specific alterations in membrane biophysical properties. We now address how the sphingolipid (SL) N-acyl chain affects membrane properties in cultured human embryonic kidney cells by overexpressing different Cer synthases (CerSs). Our results show an increase in the order of cellular membranes in CerS2-transfected cells caused by the enrichment in very long acyl chain SLs. Formation of Cer upon treatment of cells with bacterial sphingomyelinase promoted sequential changes in the properties of the membranes: after an initial increase in the order of the fluid plasma membrane, reorganization into domains with gel-like properties whose characteristics are dependent on the acyl chain structure of the Cer was observed. Moreover, the extent of alterations of membrane properties correlates with the amount of Cer formed. These data reinforce the significance of Cer-induced changes on membrane biophysical properties as a likely molecular mechanism by which different acyl chain Cers exert their specific biological actions.