Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047500

RESUMO

A T cell receptor (TCR) consists of α- and ß-chains. Accumulating evidence suggests that some TCRs possess chain centricity, i.e., either of the hemi-chains can dominate in antigen recognition and dictate the TCR's specificity. The introduction of TCRα/ß into naive lymphocytes generates antigen-specific T cells that are ready to perform their functions. Transgenesis of the dominant active TCRα creates transgenic animals with improved anti-tumor immune control, and adoptive immunotherapy with TCRα-transduced T cells provides resistance to infections. However, the potential detrimental effects of the dominant hemi-chain TCR's expression in transgenic animals have not been well investigated. Here, we analyzed, in detail, the functional status of the immune system of recently generated 1D1a transgenic mice expressing the dominant active TCRα specific to the H2-Kb molecule. In their age dynamics, neither autoimmunity due to the random pairing of transgenic TCRα with endogenous TCRß variants nor significant disturbances in systemic homeostasis were detected in these mice. Although the specific immune response was considerably enhanced in 1D1a mice, responses to third-party alloantigens were not compromised, indicating that the expression of dominant active TCRα did not limit immune reactivity in transgenic mice. Our data suggest that TCRα transgene expression could delay thymic involution and maintain TCRß repertoire diversity in old transgenic mice. The detected changes in the systemic homeostasis in 1D1a transgenic mice, which are minor and primarily transient, may indicate variations in the ontogeny of wild-type and transgenic mouse lines.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Camundongos , Animais , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos/metabolismo
2.
Biomed Pharmacother ; 145: 112480, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915667

RESUMO

Adoptive cell therapy (ACT) based on TCR- or CAR-T cells has become an efficient immunotherapeutic approach for the treatment of various diseases, including cancer. Previously, we developed a novel strategy for generating therapeutic T cell products based on chain-centric TCRs, in which either α- or ß-chain dominates in cognate antigen recognition. To assess the suitability of our experimental approach for the clinical application and predict its possible adverse effects, in studies here, we evaluated the safety of the experimental TCRα-modified T cell product in mouse preclinical models. Our data showed no tumorigenic or mutagenic activity in vitro of TCRα-transduced T cells, indicating no genotoxicity of viral vectors used for the generation of the experimental T cell product. Adoptive transfer of TCRα-engineered T cells in a wide dose range didn`t disturb the host homeostasis and exhibited no acute toxicity or immunotoxicity in vivo. Based on pharmacokinetics and pharmacodynamics analysis here, modified T cells rapidly penetrated and distributed in many viscera after infusion. Histological evaluations revealed no pathological changes in organs caused by T cells accumulation, indicating the absence of non-specific off-target activity or cross-reactivity of the therapeutic TCRα. Studies here provide valuable information on the potential safety of TCRα-T cell based ACT that could be extrapolated to possible effects in a human host.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Carcinogênese/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Homeostase/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA