Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.067
Filtrar
1.
J Environ Sci (China) ; 149: 149-163, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181630

RESUMO

Developing heterojunction photocatalyst with well-matched interfaces and multiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal, but still remains a great challenge. In present work, a new strategy of chloride anion intercalation in Bi2O3 via one-pot hydrothermal process is proposed. The as-prepared Ta-BiOCl/Bi24O31Cl10 (TBB) heterojunctions are featured with Ta-Bi24O31Cl10 and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces. In this TBB heterojunctions, the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer and multiple transfer paths, respectively, leading to enhanced visible light response and improved photogenerated charge separation. Meanwhile, a type-II heterojunction for photocharge separation has been obtained, in which photogenerated electrons are drove from the CB (conduction band) of Ta-Bi24O31Cl10 to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl, while the photogenerated holes are left on the VB (valence band) of Ta-Bi24O31Cl10, effectively hindering the recombination of photogenerated electron-hole pairs. Furthermore, the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species (·O2-). Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride (TCH) solution to Bi2O3, Ta-BiOCl and Ta-Bi24O31Cl10. This work not only proposes a Ta-BiOCl/Bi24O31Cl10 shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-II heterojunction for highly efficient photocatalytic activity, but offers a new insight into the design of highly efficient heterojunction through phase-structure synergistic transformation strategy.


Assuntos
Antibacterianos , Bismuto , Poluentes Químicos da Água , Bismuto/química , Antibacterianos/química , Poluentes Químicos da Água/química , Catálise , Processos Fotoquímicos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124988, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163772

RESUMO

Two quinoxaline dyes utilized in copper-electrolyte-based dye-sensitized solar cells (Cu-DSSCs) are theoretically investigated to analyze the impact of alkyl chains on dye performance. The investigation shows that ZS4, known for its record efficiency of up to 13.2 %, exhibits higher electron coupling and fewer binding sites for dye-[Cu(tmby)2]2+ interaction compared to ZS5. Contrary to common belief, alkyl chains are found to not only provide shielding but also hinder the interaction between dye and [Cu(tmby)2]2+ by influencing the optimal conformation of dyes, thereby impeding the charge recombination process. It is crucial to consider the influence of alkyl chains on dye conformation when discussing the relationship between dye structure and performance, rather than oversimplifying it as often done traditionally. Building on these findings, eight dyes are strategically designed by adjusting the position of the alkyl chain to further decrease charge recombination compared to ZS4. Theoretical evaluation of these dyes reveals that changing the alkyl chain on the nitrogen atom from 2-ethylhexyl (ZS4) to 1-hexylheptyl (D3-2) not only reduces the charge recombination rate but also enhances light harvesting ability. Therefore, D3-2 shows potential as a candidate for experimental synthesis of high-performance Cu-DSSCs with improved efficiency.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124973, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173324

RESUMO

The thermal-coupled levels (TCLs) of lanthanides have attracted great attention in the field of optical thermometer, offering an efficient method to achieve non-contect temperatuer feedback in complex environment. However, the iner 4f electrons are shielded, which becomes the core obstacle in improving the sensing performance. This issue is now circumvented by constructing an electron transfer pathway between Tm3+(1D2) and Eu3+(5D0) configurations. As a result, the electron transfer barrier is related to the relative temperature sensitivity, giving an insight into the modulation mechanism. Compared to the conventional TCLs systems, the relative temperature sensitivity of this strategy is highly concentration-responsive, increasing from 5.56 to 10.1 % K-1 as the Eu3+ molar concentration rises from 0.3 to 0.5 mol%. This work reveals the inner emission mechanism based on IVCT-supported emission mode, and presents the highly adjustability of sensing performance.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124964, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39180972

RESUMO

In this work, we study the contributions that different molecular blocks have in the wavelength-dependence of the refractive index in ionic liquids. The ionic liquids chosen for this work are combinations of the bis(trifluoromethylsulfonyl)imide anion with cations based on four different heterocycles with different extents of charge delocalization. The analysis is performed in terms of the experimental electronic polarizability, which is obtained by combining measurements of refractive index curves and densities via the Lorentz-Lorenz equation. Exploiting the additivity of electronic polarizability in ionic liquids, the contribution of the anion and the heterocycles of the cations is separated from that of the alkyl chains. Our results show important differences in these contributions, revealing a key influence of the charge delocalization in the cationic rings on the behavior of the refractive index dispersion. The understanding of how different parts of ionic liquids affect their refractive index dependence on wavelength would allow to gain precise control of this magnitude, enabling the development of customized optical materials for diverse applications in photonics and sensing technologies.

5.
J Colloid Interface Sci ; 678(Pt C): 636-645, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305630

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) to formate offers a promising route for carbon neutralization, but its reactivity is largely compromised due to the competitive hydrogen evolution reaction (HER) accompanying the activation of CO2 at high potentials. Herein, we modulated the charge density around Sn atoms by introducing La2Sn2O7 into SnO2, with the rich grain boundaries and fast electron transport of the heterostructure promoting CO2 reduction. Combined theoretical calculations and in situ electrochemical attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) characterization revealed enhanced activation of CO2 and adsorption of *OCHO intermediates by the constructed electron-rich SnO2. During the CO2RR process over 5 % La2Sn2O7/SnO2 catalyst, the Sn oxidation state can be effectively stabilized by the oxygen vacancies and amorphous phases appearing around SnO2, with a FE of 70.7 % for HCOOH at -0.9 V vs. RHE and stable electrolysis of 39 h. This work provides an ideal approach for the development of highly stable Sn-based electrocatalysts.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125133, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305798

RESUMO

In order to solve the problem of poor sensitivity and selectivity of conventional SERS substrates, we synthesized Mo1-xWxS2@Ag2S nanosheets in this paper by a two-step hydrothermal method. The structure and morphology of the synthesized Mo1-xWxS2@Ag2S nanosheets were characterized by XRD and SEM,respectively. The results show that the Mo1-xWxS2@Ag2S nanosheet has an irregular layered structure. Further, the SERS properties of Mo1-xWxS2@Ag2S nanosheets were tested by using rhodamine 6G (R6G), crystalline violet (CV), and 4-mercaptobenzoic acid (4-MBA) as probe molecules, respectively. The test results demonstrated that the nanosheets were specific to R6G and CV probe molecules, and the mechanism of selectivity was due to CT enhancement. In addition, Mo1-xWxS2@Ag2S exhibits ultrahigh sensitivity in R6G and CV, with the corresponding detection limit of both reached 10-8 M. And linear fitting of the peak intensities was carried out, with the R2 coefficient of 0.981 and 0.951, respectively. Finally, the relative standard deviations (RSDs) of this Mo1-xWxS2@Ag2S nanosheets was obtained to be 8.56 % by test 1 × 10-4 M R6G at the characteristic peak 613 cm-1, which represents excellent detection repeatability. The Mo1-xWxS2@Ag2S nanosheets are rich in edge-active sites favorable for charge transfer, which can enhance the SERS signals of the target molecules better. Besides, the Raman detection of the surface of Mo1-xWxS2@Ag2S nanosheets using nitrofurantoin (NFT) also reached a detection limit of 10-8 M. Mo1-xWxS2@Ag2S nanosheets substrates can find applications in medicine and provide new strategies for improving the SERS performance.

7.
J Colloid Interface Sci ; 678(Pt C): 690-703, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39307058

RESUMO

Photodynamic therapy (PDT) employs reactive oxygen species (ROS) from a photosensitizer (PS) under light, inhibiting multi-drug resistance in bacteria. However, hypoxic conditions in infection sites and biofilms challenge PDT efficiency. We developed fluorinated small molecular micelles (PF-CBMs) as PS carriers to address this, relieving hypoxia and enhancing PS penetration into biofilms. Perfluorocarbons in PF-CBMs transport more oxygen due to their excellent oxygen-dissolving capability. Fluorination enhances loading capacity and serum stability, reduces premature release, and improves cellular uptake, to improve PDT efficacy. PF-CBMs, with acid-induced surface charge transformation, exhibit superior biofilm penetration, resulting in increased antibiofilm activity of PDT. Compared to fluorine-free micelles (PC-CBMs), PF-CBMs demonstrate better serum stability, higher drug loading, and reduced premature release, leading to significantly improved antibacterial efficacy in vitro and in vivo. In conclusion, fluorinated micelles with surface charge reversal enhance PDT for antibacterial and antibiofilm applications.

8.
Small ; : e2404112, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308295

RESUMO

In this study, innovative nanoscale devices are developed to investigate the charge transport in organic semiconductor nanoparticles. Using different steps of lithography techniques and dielectrophoresis, planar organic nano-junctions are fabricated from which hole mobilities are extracted in a space charge-limited current regime. Subsequently, these devices are used to investigate the impact of the composition and morphology of organic semiconductor nanoparticles on the charge mobilities. Pure donor nanoparticles and composite donor:acceptor nanoparticles with different donor compositions in their shell are inserted in the nanogap electrode to form the nano-junctions. The results highlight that the hole mobilities in the composite nanoparticles decrease by two-fold compared to pure donor nanoparticles. However, no significant change between the two kinds of composite nanoparticle morphologies is observed, indicating that conduction pathways for the holes are as efficient for donor proportion in the shell from 40% to 60%. Organic photovoltaic (OPV) devices are fabricated from water-based colloidal inks containing the two composite nanoparticles (P3HT:eh-IDTBR and P3HT:o-IDTBR) and no significant change in the performances is observed in accordance with the mobility results. Through this study, the performance of OPV devices have been succesfully correlated to the transport properties of nanoparticles having different morphology via innovative nanoscale devices.

9.
Small ; : e2404858, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279606

RESUMO

Seawater electrolysis is the most promising technology for hydrogen production, in which surface reconstruction on the interface of electrode/electrolyte plays a crucial role in activating the catalytic reactions with a low activation energy barrier. Herein, an efficient Mo modifying NiCoMo prickly flower clusters electrocatalyst supported on nickel foam (Mo-doped Ni/Co-OOH prickly flower clusters) is obtained, which serves as an eminently active and durable catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to the surface reconstruction during the alkaline seawater electrolysis with ultralow overpotentials. It just requires a cell voltage of 1.52 V to achieve the current density of 10 mA cm-2 for water electrolysis along with robust durability over 30 h. Mo doping effectively regulates the surface reconstruction of Ni/Co-OOH, which facilitates the adsorption of oxygen-containing intermediates on the active center, and the nonhomogeneous interface induces charge rearrangement for the catalytic process to improve efficiency, providing a new strategy for revealing the seawater electrolytic mechanism.

10.
ACS Appl Bio Mater ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279649

RESUMO

Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.

11.
Anal Bioanal Chem ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283368

RESUMO

Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits. Applied on the liquid chromatography time scale using an Orbitrap Tribrid mass spectrometer, PTCR produces easy-to-interpret mass spectra with limited ion signal overlap. We demonstrate that the accurate estimation of the number of charges submitted to the Orbitrap mass analyzer after PTCR allows for the detection of charge-reduced product ions over a wide mass-over-charge (m/z) window with low parts per million m/z accuracy. Therefore, PTCR-based MD MS analysis increases not only sequence coverage, number of uniquely identified fragments, and number of assigned complementary ion pairs, but also the general confidence in the assignment of subunit fragments. This data acquisition method can be readily applied to any class of mAbs without an apparent need for optimization, and benefits from the high resolving power of the Orbitrap mass analyzer to return sequence coverage of individual subunits exceeding 80% in a single run, and > 90% when just two experiments are combined.

12.
Proc Natl Acad Sci U S A ; 121(37): e2403879121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226361

RESUMO

The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.

13.
ACS Appl Mater Interfaces ; 16(37): 49124-49134, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230602

RESUMO

Photocatalytic molecules are considered to be one of the most promising substitutions of antibiotics against multidrug-resistant bacterial infections. However, the strong excitonic effect greatly restricts their efficiency in antibacterial performance. Inspired by the interfacial dipole effect, a Ti3C2 MXene modified photocatalytic molecule (MTTTPyB) is designed and synthesized to enhance the yield of photogenerated carriers under light irradiation. The alignment of the energy level between Ti3C2 and MTTTPyB results in the formation of an interfacial dipole, which can provide an impetus for the separation of carriers. Under the role of a dipole electric field, these photogenerated electrons can rapidly migrate to the side of Ti3C2 for improving the separation efficiency of photogenerated electrons and holes. Thus, more electrons can be utilized to produce reactive oxygen species (ROS) under light irradiation. As a result, over 97.04% killing efficiency can be reached for Staphylococcus aureus (S. aureus) when the concentration of MTTTPyB/Ti3C2 was 50 ppm under 660 nm irradiation for 15 min. A microneedle (MN) patch made from MTTTPyB/Ti3C2 was used to treat the subcutaneous bacterial infection. This design of an organic-inorganic interface provides an effective method to minimize the excitonic effect of molecules, further expanding the platform of inorganic/organic hybrid materials for efficient phototherapy.


Assuntos
Antibacterianos , Staphylococcus aureus , Titânio , Staphylococcus aureus/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Titânio/efeitos da radiação , Antibacterianos/química , Antibacterianos/farmacologia , Catálise/efeitos da radiação , Luz , Animais , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Camundongos , Testes de Sensibilidade Microbiana , Esterilização/métodos , Processos Fotoquímicos
14.
ACS Appl Mater Interfaces ; 16(37): 49563-49573, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231017

RESUMO

In this work, an efficient and robust hole transport layer (HTL) based on blended poly((9,9-dioctylfluorenyl-2,7-diyl)-alt-(9-(2-ethylhexyl)-carbazole-3,6-diyl)) (PF8Cz) and crosslinkable 3,3'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(9-(4-vinylphenyl)-9H-carbazole) (FLCZ-V) is introduced for high-performance and stable blue quantum dot-based light-emitting diodes (QLEDs), wherein FLCZ-V can in situ-crosslink to a continuous network polymer after thermal treatment and the linear polymer PF8CZ becomes intertwined and imprisoned. As a result, the blended HTL shows a high hole mobility (1.27 × 10-4 cm2 V-1 s-1) and gradient HOMO levels (-5.4 eV of PF8CZ and -5.7 eV of FLCZ-V) that can facilitate hole injecting so as to ameliorate the charge balance and, at the same time, achieve better electron-blocking capability that can effectively attenuate HTL decomposition. Meanwhile, the crosslinked blended HTL showed excellent solvent resistance and a high surface energy of 40.34 mN/m, which is favorable to enhance wettability for the deposition of a follow-up layer and attain better interfacial contact. Based on the blended HTL, blue QLEDs were fabricated by both spin-coating and inkjet printing. For the spin-coated blue QLED, a remarkable enhancement of external quantum efficiency (EQE) of 15.5% was achieved. Also, the EQE of the inkjet-printed blue QLED reached 9.2%, which is thus far the best result for the inkjet-printed blue QLED.

15.
ACS Appl Mater Interfaces ; 16(37): 49013-49029, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231128

RESUMO

Heparan sulfate (HS) is a major component of cell surface glycocalyx with extensive negative charges and plays a protective role by preventing toxins, including small molecule drugs and anticancer cationic lytic peptides (ACLPs), from cells. However, this effect may compromise the treatment efficiency of anticancer drugs. To overcome the impedance of cancer cell glycocalyx, an HS-targeting ACLP PTP-7z was designed by fusion of an ACLP and a Zn2+-binding HS-targeting peptide. Upon Zn2+ ion binding, PTP-7z could self-assemble into uniform nanoparticles and show improved serum stability and reduced hemolysis, which enable it to self-deliver to tumor sites. The peptide PTP-7z showed a pH- and Zn2+ ion-dependent HS-binding ability, which triggers the HS-induced in situ self-assembling on the cancer cell surface in the acidic tumor microenvironment (TME). The self-assembled PTP-7z can overcome the impedance of cell glycocalyx by either disrupting cell membranes or translocating into cells through endocytosis and inducing cell apoptosis. Moreover, PTP-7z can also inhibit cancer cell migration. These results proved that HS-responsive in situ self-assembling is a practical strategy to overcome the cancer cell glycocalyx barrier for ACLPs and could be extended to the design of other peptide drugs to promote their in vivo application.


Assuntos
Antineoplásicos , Glicocálix , Heparitina Sulfato , Peptídeos , Heparitina Sulfato/química , Heparitina Sulfato/farmacologia , Glicocálix/metabolismo , Glicocálix/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química
16.
Data Brief ; 57: 110883, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39290424

RESUMO

This data article refers to the paper "A method for generating complete EV charging datasets and analysis of residential charging behaviour in a large Norwegian case study" [1]. The Electric Vehicle (EV) charging dataset includes detailed information on plug-in times, plug-out times, and energy charged for over 35,000 residential charging sessions, covering 267 user IDs across 12 locations within a mature EV market in Norway. Utilising methodologies outlined in [1], realistic predictions have been integrated into the datasets, encompassing EV battery capacities, charging power, and plug-in State-of-Charge (SoC) for each EV-user and charging session. In addition, hourly data is provided, such as energy charged and connected energy capacity for each charging session. The comprehensive dataset provides the basis for assessing current and future EV charging behaviour, analysing and modelling EV charging loads and energy flexibility, and studying the integration of EVs into power grids.

17.
Annu Rev Vis Sci ; 10(1): 171-198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39292550

RESUMO

This article reviews nearly 60 years of solid-state image sensor evolution and identifies potential new frontiers in the field. From early work in the 1960s, through the development of charge-coupled device image sensors, to the complementary metal oxide semiconductor image sensors now ubiquitous in our lives, we discuss highlights in the evolutionary chain. New frontiers, such as 3D stacked technology, photon-counting technology, and others, are briefly discussed.

18.
Sci Rep ; 14(1): 21795, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294258

RESUMO

In this work, a new kind of charge scheduling algorithm is proposed by utilizing the War Strategy Optimization (WSO) algorithm. The strategies used in the war such as attack, defense, assigning soldiers to take positions are the inspiration to this algorithm. The proposed WSO algorithm is validated in a constructed geographic area which consists of Six starting/destination points, sixteen nodes, and twelve charging stations. In terms of waiting time and charging cost, the experimental results show that the WSO method much improves over current methods. The average waiting time and average charging cost of EVs are validated in MATLAB, with different considerations such as different number of EVs varied from 25 to 100, and different number of charging piles varied from 1 to 4. The WSO algorithm specifically lowered charging costs by up to 13.67% compared to the same and waiting time by up to 83.25% relative to the First Come First Serve algorithm. Comparatively to the Chaotic Harris Hawk Optimization and Harris Hawk Optimization algorithms, the WSO method demonstrated declines in waiting time by 11.17% and 39.09%, respectively, and declines in charging costs by 3.61% and 12.45%, respectively. Especially in situations with limited charging infrastructure, these findings show that the WSO algorithm may improve the efficiency and cost-effectiveness of EV charging management systems. For real-world EV charging management systems, the method's capacity to efficiently allocate EVs among charging stations, lower waiting times, and lower charging costs makes it a potential solution.

19.
Small Methods ; : e2400844, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300852

RESUMO

Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.

20.
Small ; : e2405953, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301996

RESUMO

The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA