Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402471, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828743

RESUMO

Photocatalytic solar-to-fuel conversion over metal halide perovskites (MHPs) has recently attracted much attention, while the roles of defects in MHPs are still under debate. Specifically, the mainstream viewpoint is that the defects are detrimental to photocatalytic performance, while some recent studies show that certain types of defects contribute to photoactivity enhancement. However, a systematic summary of why it is contradictory and how the defects in MHPs affect photocatalytic performance is still lacking. In this review, the innovative roles of defects in MHP photocatalysts are highlighted. First, the origins of defects in MHPs are elaborated, followed by clarifying certain benefits of defects in photocatalysts including optical absorption, charge dynamics, and surface reaction. Afterward, the recent progress on defect-related MHP photocatalysis, i.e., CO2 reduction, H2 generation, pollutant degradation, and organic synthesis is systematically discussed and critically appraised, putting emphasis on their beneficial effects. With defects offering peculiar sets of merits and demerits, the personal opinion on the ongoing challenges is concluded and outlining potentially promising opportunities for engineering defects on MHP photocatalysts. This critical review is anticipated to offer a better understanding of the MHP defects and spur some inspiration for designing efficient MHP photocatalysts.

2.
Small Methods ; : e2301431, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169117

RESUMO

The intra-gap states that are introduced into a semiconducting photocatalyst via dopants and other defects have significant implications on the transport dynamics of photoexcited electrons and holes during an aqueous light-driven reaction. In this work, mechanistic understanding of Rh-doped rutile, a promising photocatalyst for hydrogen production from water, is gained by systematic assessment combining intensity-modulated photocurrent spectroscopy with sub-gap excitations and alternating-current photocurrent spectroscopy. These operando techniques not only help in discovering a new electronic transport path in Rh-rutile via surface Rh4+ species and elucidating complex interaction between electrolyte molecules and semiconductors, but also underscore the potential of utilizing multiple sub-gap excitations synergistically. This combination offers a powerful tool for acquiring insight into photo-physical and photo-chemical behaviors of photo(electro)catalysts with intra-gap states.

3.
ACS Appl Mater Interfaces ; 16(1): 784-794, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38165077

RESUMO

Highly crystalline carbon nitride (CCN), benefiting from the reduced structural imperfections, enables improved electron-hole separation. Yet, the crystalline phase with insufficient inherent defects suffers from a poor performance toward the reaction intermediate adsorption with respect to the amorphous phase. Herein, a crystalline-amorphous carbon nitride (CACN) with an isotype structure was constructed via a two-step adjacent calcination strategy. Through specific oxygen etching and crystallization, the formation of a built-in electric field at the interface could drive charge transfer and separation, thus promoting photoredox reaction. As expected, the optimized CACN exhibited a H2O2 generation efficiency as high as 2.15 mM gcat-1 h-1, paired with a promoted pollutant degradation efficiency, which outperform its crystalline (CCN) and amorphous [amorphous carbon nitride (ACN)] counterparts. The detailed electron/hole transportation via a built-in electronic field and free radical formation based on the enhanced adsorption of oxygen were considered, and the synchronous reaction pathway was carried out. This work paves a novel pathway for the synthesis of carbon nitride with an isotype structure from the perspective of interfacial engineering.

4.
Adv Mater ; 36(9): e2306373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37703387

RESUMO

Organic solar cells (OSCs) exhibit complex charge dynamics, which are closely correlated with the dielectric constant (ɛr ) of photovoltaic materials. In this work, a series of novel conjugated copolymers based on benzo[1,2-b:4,5-b']difuran (BDF) and benzotriazole (BTz) is designed and synthesized, which differ by the nature of π-bridge from one another. The PBDF-TF-BTz with asymmetric furan and thiophene π-bridge demonstrates a larger ɛr of 4.22 than PBDF-dT-BTz with symmetric thiophene π-bridge (3.15) and PBDF-dF-BTz with symmetric furan π-bridge (3.90). The PBDF-TF-BTz also offers more favorable molecular packing and appropriate miscibility with non-fullerene acceptor Y6 than its counterparts. The corresponding PBDF-TF-BTz:Y6 OSCs display efficient exciton dissociation, fast charge transport and collection, and reduced charge recombination, eventually leading to a power conversion efficiency of 17.01%. When introducing a fullerene derivative (PCBO-12) as a third component, the PBDF-TF-BTz:Y6:PCBO-12 OSCs yield a remarkable FF of 80.11% with a high efficiency of 18.10%, the highest value among all reported BDF-polymer-based OSCs. This work provides an effective approach to developing high-permittivity photovoltaic materials, showcasing PBDF-TF-BTz as a promising polymer donor for constructing high-performance OSCs.

5.
Adv Mater ; 36(9): e2307490, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939231

RESUMO

Photocatalytic technology based on carbon nitride (C3 N4 ) offers a sustainable and clean approach for hydrogen peroxide (H2 O2 ) production, but the yield is severely limited by the sluggish hot carriers due to the weak internal electric field. In this study, a novel approach is devised by fragmenting bulk C3 N4  into smaller pieces (CN-NH4 ) and then subjecting it to a directed healing process to create multiple order-disorder interfaces (CN-NH4 -NaK). The resulting junctions in CN-NH4 -NaK significantly boost charge dynamics and facilitate more spatially and orderly separated redox centers. As a result, CN-NH4 -NaK demonstrates outstanding photosynthesis of H2 O2 via both two-step single-electron and one-step double-electron oxygen reduction pathways, achieving a remarkable yield of 16675 µmol h-1  g-1 , excellent selectivity (> 91%), and a prominent solar-to-chemical conversion efficiency exceeding 2.3%. These remarkable results surpass pristine C3 N4 by 158 times and outperform previously reported C3 N4 -based photocatalysts. This work represents a significant advancement in catalyst design and modification technology, inspiring the development of more efficient metal-free photocatalysts for the synthesis of highly valued fuels.

6.
Small ; 20(6): e2306104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775948

RESUMO

Microwave absorbers with high efficiency and mechanical robustness are urgently desired to cope with more complex and harsh application scenarios. However, manipulating the trade-off between microwave absorption performance and mechanical properties is seldom realized in microwave absorbers. Here, a chemistry-tailored charge dynamic engineering strategy is proposed for sparking hetero-interfacial polarization and thus coordinating microwave attenuation ability with the interfacial bonding, endowing polymer-based composites with microwave absorption efficiency and mechanical toughness. The absorber designed by this new conceptual approach exhibits remarkable Ku-band microwave absorption efficiency (-55.3 dB at a thickness of 1.5 mm) and satisfactory effective absorption bandwidth (5.0 GHz) as well as desirable interfacial shear strength (97.5 MPa). The calculated differential charge density depicts the uneven distribution of space charge and the intense hetero-interfacial polarization, clarifying the structure-performance relationship from a theoretical perspective. This work breaks through traditional single performance-oriented design methods and ushers a new direction for next-generation microwave absorbers.

7.
Small ; 20(15): e2308088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009494

RESUMO

Sluggish charge kinetics and low selectivity limit the solar-driven selective organic transformations under mild conditions. Herein, an efficient strategy of halogen-site regulation, based on the precise control of charge transfer and molecule activation by rational design of Cs3Bi2X9 quantum dots photocatalysts, is proposed to achieve both high selectivity and yield of benzyl-alcohol oxidation. In situ PL spectroscopy study reveals that the Bi─Br bonds formed in the form of Br-associated coordination can enhance the separation and transfer of photoexcited carriers during the practical reaction. As the active center, the exclusive Bi─Br covalence can benefit the benzyl-alcohol activation for producing carbon-centered radicals. As a result, the Cs3Bi2Br9 with this atomic coordination achieves a conversion ratio of 97.9% for benzyl alcohol and selectivity of 99.6% for aldehydes, which are 56.9- and 1.54-fold higher than that of Cs3Bi2Cl9. Combined with quasi-in situ EPR, in situ ATR-FTIR spectra, and DFT calculation, the conversion of C6H5-CH2OH to C6H5-CH2* at Br-related coordination is revealed to be a determining step, which can be accelerated via halogen-site regulation for enhancing selectivity and photocatalytic efficiency. The mechanistic insights of this research elucidate how halogen-site regulation in favor of charge transfer and molecule activation toward efficient and selective oxidation of benzyl alcohol.

8.
ACS Appl Mater Interfaces ; 15(46): 53382-53394, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37950688

RESUMO

Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 µmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.

9.
Proc Natl Acad Sci U S A ; 120(32): e2305621120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527342

RESUMO

Solid-state defects are attractive platforms for quantum sensing and simulation, e.g., in exploring many-body physics and quantum hydrodynamics. However, many interesting properties can be revealed only upon changes in the density of defects, which instead is usually fixed in material systems. Increasing the interaction strength by creating denser defect ensembles also brings more decoherence. Ideally one would like to control the spin concentration at will while keeping fixed decoherence effects. Here, we show that by exploiting charge transport, we can take some steps in this direction, while at the same time characterizing charge transport and its capture by defects. By exploiting the cycling process of ionization and recombination of NV centers in diamond, we pump electrons from the valence band to the conduction band. These charges are then transported to modulate the spin concentration by changing the charge state of material defects. By developing a wide-field imaging setup integrated with a fast single photon detector array, we achieve a direct and efficient characterization of the charge redistribution process by measuring the complete spectrum of the spin bath with micrometer-scale spatial resolution. We demonstrate a two-fold concentration increase of the dominant spin defects while keeping the T2 of the NV center relatively unchanged, which also provides a potential experimental demonstration of the suppression of spin flip-flops via hyperfine interactions. Our work paves the way to studying many-body dynamics with temporally and spatially tunable interaction strengths in hybrid charge-spin systems.

10.
ACS Appl Mater Interfaces ; 15(34): 41109-41120, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590128

RESUMO

Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.

11.
Nano Lett ; 23(3): 1017-1022, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36668997

RESUMO

The silicon vacancy (SiV) center in diamond is typically found in three stable charge states, SiV0, SiV-, and SiV2-, but studying the processes leading to their formation is challenging, especially at room temperature, due to their starkly different photoluminescence rates. Here, we use confocal fluorescence microscopy to activate and probe charge interconversion between all three charge states under ambient conditions. In particular, we witness the formation of SiV0 via the two-step capture of diffusing, photogenerated holes, a process we expose both through direct SiV0 fluorescence measurements at low temperatures and confocal microscopy observations in the presence of externally applied electric fields. In addition, we show that continuous red illumination induces the converse process, first transforming SiV0 into SiV- and then into SiV2-. Our results shed light on the charge dynamics of SiV and promise opportunities for nanoscale sensing and quantum information processing.

12.
Nanoscale Res Lett ; 17(1): 95, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161373

RESUMO

Ensembles of negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for sensing of magnetic fields and paramagnetic agents, and as a source of spin-order for the hyperpolarization of nuclei in magnetic resonance applications. To this end, strongly fluorescent nanodiamonds (NDs) represent promising materials, with large surface areas and dense ensembles of NV-. However, surface effects tend to favor the less useful neutral form, the NV0 centers, and strategies to increase the density of shallow NV- centers have been proposed, including irradiation with strong laser power (Gorrini in ACS Appl Mater Interfaces. 13:43221-43232, 2021). Here, we study the fluorescence properties and optically detected magnetic resonance (ODMR) of NV- centers as a function of laser power in strongly fluorescent bulk diamond and in nanodiamonds obtained by nanomilling of the native material. In bulk diamond, we find that increasing laser power increases ODMR contrast, consistent with a power-dependent increase in spin-polarization. Conversely, in nanodiamonds we observe a non-monotonic behavior, with a decrease in ODMR contrast at higher laser power. We hypothesize that this phenomenon may be ascribed to more efficient NV-→NV0 photoconversion in nanodiamonds compared to bulk diamond, resulting in depletion of the NV- pool. A similar behavior is shown for NDs internalized in macrophage cells under the typical experimental conditions of imaging bioassays. Our results suggest strong laser irradiation is not an effective strategy in NDs, where the interplay between surface effects and local microenvironment determine the optimal experimental conditions.

13.
Adv Mater ; 34(29): e2201409, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581173

RESUMO

Device optimization of light-emitting diodes (LEDs) targets the most efficient conversion of electrically injected charges into emitted light. The emission zone in an LED is where charges recombine and light is emitted from. It is believed that the emission zone is strongly linked to device efficiency and lifetime. However, the emission zone size is below the optical diffraction limit, so it is difficult to measure. An accessible method based on a single emission spectrum that enables emission zone measurements with sub-second time resolution is shown. A procedure is introduced to study and control the emission zone of an LED system and correlate it with device performance. A thermally activated delayed fluorescence organic LED emission zone is experimentally measured over all luminescing current densities, while varying the device structure and while ageing. The emission zone is shown to be finely controlled by emitter doping because electron transport via the emitter is the charge-transport bottleneck of the system. Suspected quenching/degradation mechanisms are linked with the emission zone changes, device structure variation, and ageing. Using these findings, a device with an ultralong 4500 h T95 lifetime at 1000 cd m-2 with 20% external quantum efficiency is shown.

14.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35564198

RESUMO

The purpose of this present study is to prepare a stable mineral-oil (MO)-based nanofluid (NF) for usage as a coolant in a transformer. Nanoparticles (NPs) such as hexagonal boron nitride (h-BN) and titanium oxide (TiO2) have superior thermal and electrical characteristics. Their dispersion into MO is likely to elevate the electrothermal properties of NFs. Therefore, different batches of NFs are prepared by uniformly dispersing the insulating h-BN and semiconducting TiO2 NP of different concentrations in MO. Bulk h-BN NP of size 1µm is exfoliated into 2D nanosheets of size 150-200 nm, subsequently enhancing the surface area of exfoliated h-BN (Eh-BN). However, from the zeta-potential analysis, NP concentration of 0.01 and 0.1 wt.% are chosen for further study. The thermal conductivity and ACBDV studies of the prepared NF are performed to investigate the cooling and insulation characteristics. The charging-dynamics study verifies the enhancement in ACBDV of the Eh-BN NF. Weibull statistical analysis is carried out to obtain the maximum probability of ACBDV failure, and it is observed that 0.01 wt.% based NF has superior cooling and insulation properties than MO and remaining batches of NFs.

15.
Nanomicro Lett ; 14(1): 74, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35278132

RESUMO

Photocatalytic conversion of CO2 to high-value products plays a crucial role in the global pursuit of carbon-neutral economy. Junction photocatalysts, such as the isotype heterojunctions, offer an ideal paradigm to navigate the photocatalytic CO2 reduction reaction (CRR). Herein, we elucidate the behaviors of isotype heterojunctions toward photocatalytic CRR over a representative photocatalyst, g-C3N4. Impressively, the isotype heterojunctions possess a significantly higher efficiency for the spatial separation and transfer of photogenerated carriers than the single components. Along with the intrinsically outstanding stability, the isotype heterojunctions exhibit an exceptional and stable activity toward the CO2 photoreduction to CO. More importantly, by combining quantitative in situ technique with the first-principles modeling, we elucidate that the enhanced photoinduced charge dynamics promotes the production of key intermediates and thus the whole reaction kinetics.

16.
ACS Appl Mater Interfaces ; 14(13): 15840-15848, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319867

RESUMO

Instability caused by the migrating ions is one of the major obstacles toward the large-scale application of metal halide perovskite optoelectronics. Inactivating mobile ions/defects via chemical passivation, e.g., amino acid treatment, is a widely accepted approach to solve that problem. To investigate the detailed interplay, L-phenylalanine (PAA), a typical amino acid, is used to modify the SnO2/MAPbI3 interface. The champion device with PAA treatment maintains 80% of its initial power conversion efficiency (PCE) when stored after 528 h in an ambient condition with the relative humidity exceeding 70%. By employing a wide-field photoluminescence imaging microscope to visualize the ion movement and calculate ionic mobility quantitatively, we propose a model for enhanced stability in perspective of suppressed ion migration. Besides, we reveal that the PAA dipole layer facilitates charge transfer at the interface, enhancing the PCE of devices. Our work may provide an in-depth understanding toward high-efficiency and stable perovskite optoelectronic devices.

17.
J Phys Condens Matter ; 34(13)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34983033

RESUMO

An exact analytical model of charge dynamics for a chain of atoms with asymmetric hopping terms is presented. Analytic and numeric results are shown to give rise to similar dynamics in both the absence and presence of electron interactions. The chain model is further extended to the case of two atoms per cell (a perfect alloy system). This extension is further applied to contact electrification between two different atomic chains and the effect of increasing the magnitude of the contact transfer matrix element is studied.

18.
Nano Lett ; 21(16): 6960-6966, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34339601

RESUMO

Control over the charge states of color centers in solids is necessary to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-band-gap semiconductors are complex, and much remains unknown. We utilize a single-shot charge-state readout of an individual nitrogen-vacancy (NV) center to probe the charge dynamics of the surrounding defects in diamond. We show that the NV center charge state can be converted through the capture of holes produced by optical illumination of defects many micrometers away. With this method, we study the optical charge conversion of silicon-vacancy (SiV) centers and provide evidence that the dark state of the SiV center under optical illumination is SiV2-. These measurements illustrate that charge carrier generation, transport, and capture are important considerations in the design and implementation of quantum devices with color centers and provide a novel way to probe and control charge dynamics in diamond.


Assuntos
Diamante , Nitrogênio , Iluminação , Semicondutores , Silício
19.
ACS Appl Mater Interfaces ; 13(33): 39689-39700, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34357753

RESUMO

To compensate for the photoelectric losses of planar heterojunction perovskite solar cells (PSCs), the development of high-quality textured absorbers with excellent light-harvesting ability and carrier extraction/transfer efficiency is of great significance to achieve a high-efficiency stable photovoltaic output. In this paper, we propose an in situ growth passivation technique to construct high-performance textured absorbers by adding a 2-amino-4-chlorophenol (AC) modifier consisting of multiple groups during the growth of textured perovskite. Initially, according to the Ostwald ripening mechanism, the strongly polar dimethylformamide (DMF) was used as the etchant to systematically study its synergistic effect on the morphology evolution, crystallization kinetics, light-trapping capability, and photovoltaic loss of textured absorbers. An appropriate amount of DMF induces formamidinium cations (FA+) to replace methylammonium cations (MA+) in the perovskite lattice while etching the absorber to form a texture configuration, which effectively broadens the spectral absorption range, thus greatly improving the light-trapping capacity and short-circuit current density of planar PSCs. In contrast, excess DMF deteriorates the device performance due to the excessive corrosion of the perovskite. Moreover, the introduction of the AC modifier is of great significance for passivating deep-level defects and accelerating the charge extraction/transfer. Owing to the electron-donating nature of the Lewis base, the hydroxyl groups with a higher electron density in AC molecules can better coordinate with Pb2+ ion defects, which effectively improves the crystallinity of the textured perovskite, thus suppressing the nonradiative recombination and ultimately improving the photovoltaic outputs of modified devices, particularly the fill factor and the open-circuit voltage. Thus, the photovoltaic performance of the AC-modified planar PSC is significantly better than that of the conventional textured device, with a reverse efficiency of 21.18% and forward efficiency of 20.77%. Owing to the synergistic effect of (1) the superior optical properties of the textured perovskite induced by DMF and (2) excellent charge dynamics driven by AC, the functionalized devices without encapsulation also exhibited good photovoltaic output stability and reproducibility. This work provides novel insights into the growth mechanism of textured absorbers and paves the way for more efficient and stable planar PSCs.

20.
Nano Lett ; 21(11): 4577-4583, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038142

RESUMO

Light sources on the scale of single molecules can be addressed and characterized at their proper sub-nanometer scale by scanning tunneling microscopy-induced luminescence (STML). Such a source can be driven by defined short charge pulses while the luminescence is detected with sub-nanosecond resolution. We introduce an approach to concurrently image the molecular emitter, which is based on an individual defect, with its local environment along with its luminescence dynamics at a resolution of a billion frames per second. The observed dynamics can be assigned to the single electron capture occurring in the low-nanosecond regime. While the emitter's location on the surface remains fixed, the scanning of the tip modifies the energy landscape for charge injection into the defect. The principle of measurement is extendable to fundamental processes beyond charge transfer, like exciton diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA