Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Adv Sci (Weinh) ; : e2408538, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440515

RESUMO

Chemical protein synthesis by amide-forming ligation of two unprotected peptide segments offers an effective strategy for the preparation of protein derivatives that are not accessible through bioengineering approaches. Herein, an unprecedented chemical ligation between peptides with C-terminal 2-mercaptobenzaldehyde (thiol-salicylaldehyde, TSAL) esters and peptides bearing N-terminal cysteine/penicillamine is reported. Reactive peptide TSAL esters can be obtained from peptide hydrazides in an operationally simple and highly effective manner. This chemoselective peptide ligation enables the rapid production of N,S-benzylidene acetal intermediates, which can readily be converted into native amide bonds even at sterically hindered junctions. In addition, the current method can be applied compatibly in concert with other types of ligations and subsequent desulfurization chemistry, thereby facilitating convergent protein synthesis. The effectiveness of this new method is also showcased by the total synthesis of proteins ubiquitin and hyalomin-3 (Hyal-3), the efficient synthesis of protein ubiquitin-fold modifier 1 (UFM1) via a C-to-N sequential TSAL ester-induced ligation strategy, and the chemical synthesis of protein Mtb CM through a combined strategy of Ser/Thr ligation and TSAL ester-induced ligations.

2.
Protein Sci ; 33(10): e5174, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276022

RESUMO

Chemical protein synthesis (CPS), in which custom peptide segments of ~20-60 aa are produced by solid-phase peptide synthesis and then stitched together through sequential ligation reactions, is an increasingly popular technique. The workflow of CPS is often depicted with a "bracket" style diagram detailing the starting segments and the order of all ligation, desulfurization, and/or deprotection steps to obtain the product protein. Brackets are invaluable tools for comparing multiple possible synthetic approaches and serve as blueprints throughout a synthesis. Drawing CPS brackets by hand or in standard graphics software, however, is a painstaking and error-prone process. Furthermore, the CPS field lacks a standard bracket format, making side-by-side comparisons difficult. To address these problems, we developed BracketMaker, an open-source Python program with built-in graphic user interface (GUI) for the rapid creation and analysis of CPS brackets. BracketMaker contains a custom graphics engine which converts a text string (a protein sequence annotated with reaction steps, introduced herein as a standardized format for brackets) into a high-quality vector or PNG image. To aid with new syntheses, BracketMaker's "AutoBracket" tool automatically performs retrosynthetic analysis on a set of segments to draft and rank all possible ligation orders using standard native chemical ligation, protection, and desulfurization techniques. AutoBracket, in conjunction with an improved version of our previously reported Automated Ligator (Aligator) program, provides a pipeline to rapidly develop synthesis plans for a given protein sequence. We demonstrate the application of both programs to develop a blueprint for 65 proteins of the minimal Escherichia coli ribosome.


Assuntos
Software , Proteínas/química , Proteínas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Peptídeos/química , Peptídeos/síntese química
3.
Angew Chem Int Ed Engl ; : e202414256, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215490

RESUMO

Matrix metallopeptidase 7 (MMP7) plays a crucial role in cancer metastasis and progression, making it an attractive target for therapeutic development. However, the development of selective MMP7 inhibitors is challenging due to the conservation of active sites across various matrix metalloproteinases (MMPs). Here, we have developed mirror-image random nonstandard peptides integrated discovery (MI-RaPID) technology to discover innate protease-resistant macrocyclic peptides that specifically bind to and inhibit human MMP7. One identified macrocyclic peptide against D-MMP7, termed D20, was synthesized in its mirror-image form, D'20, consisting of 12 D-amino acids, one cyclic b-amino acid, and a thioether bond. Notably, it potently inhibited MMP7 with an IC50 value of 90 nM, and showed excellent selectivity over other MMPs with similar substrate specificity. Moreover, D'20 inhibited the migration of pancreatic cell line CFPAC-1, but had no effect on the cell proliferation and viability. D'20 exhibited excellent stability in human serum, as well as in simulated gastric and intestinal fluids. This study highlights that MI-RaPID technology can serve as a powerful tool to develop in vivo stable macrocyclic peptides for therapeutic applications.

4.
Angew Chem Int Ed Engl ; : e202413644, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198217

RESUMO

Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of the full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E. coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.

5.
Angew Chem Int Ed Engl ; : e202409440, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128879

RESUMO

Antisense oligonucleotide (ASO) therapies hold significant promise in the realm of molecular medicine. By precisely targeting RNA molecules, ASOs offer an approach to modulate gene expression and protein production, making them valuable tools for treating a wide range of genetic and acquired diseases. As the precise intracellular targeting and delivery of ASOs is challenging, strategies for preparing ASO-ligand conjugates are in exceedingly high demand. This work leverages the utility of native chemical ligation to conjugate ASOs with therapeutically relevant chemical modifications including locked nucleic acids and phosphorothioate backbone modifications to peptides and sugars via a stable amide linkage. A suite of post-ligation functionalizations through modification of the cysteine ligation handle are highlighted, including chemoselective radical desulfurization, lipidation, and alkylation with a range of valuable handles (e.g. alkyne, biotin, and radionuclide chelating ligands), affording multifunctional constructs for further applications in biology and medicine. Application of the methodology to a clinically-relevant triantennary-GalNAc ASO conjugate and validation of its binding and functional activity underpins the applicability of the technique to oligonucleotide-based therapeutics.

6.
Chem Pharm Bull (Tokyo) ; 72(7): 700-710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39069473

RESUMO

We report two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s), without use of a protecting group for the sulfate moiety. The first was based on direct thioesterification using carbodiimide on a fully protected peptide acid, prepared on a 2-chlorotrityl (Clt) resin with fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis (Fmoc-SPPS). Subsequent deprotection of the protecting groups with trifluoroacetic acid (TFA) (0 °C, 4 h) yielded peptide thioesters containing Tyr(SO3H) residue(s). Peptide thioesters containing one to three Tyr(SO3H) residue(s), prepared by this method, were used as building blocks for the synthesis of the Nα-Fmoc-protected N-terminal part of P-selectin glycoprotein ligand 1 (PSGL-1) (Fmoc-PSGL-1(43-74)) via silver-ion mediated thioester segment condensation. The other method was based on the thioesterification of peptide azide, derived from a peptide hydrazide prepared on a NH2NH-Clt-resin with Fmoc-SPPS. Peptide thioester containing two Tyr(SO3H) residues, prepared via this alternative method, was used as a building block for the one-pot synthesis of the N-terminal extracellular portion of CC-chemokine receptor 5 (CCR5(9-26)) by native chemical ligation (NCL). The two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s) described herein are applicable to the synthesis of various types of sulfopeptides.


Assuntos
Ésteres , Peptídeos , Técnicas de Síntese em Fase Sólida , Peptídeos/química , Peptídeos/síntese química , Ésteres/química , Ésteres/síntese química , Sulfatos/química , Tirosina/química , Tirosina/síntese química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/síntese química , Estrutura Molecular , Glicoproteínas de Membrana
7.
Methods Mol Biol ; 2819: 573-582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028524

RESUMO

Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese
8.
Chembiochem ; 25(20): e202400253, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965889

RESUMO

The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.


Assuntos
Sinucleinopatias , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Humanos , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Processamento de Proteína Pós-Traducional
9.
Front Chem ; 12: 1391678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873405

RESUMO

Cysteinyl RGD-peptidyl cysteinyl prolyl esters, which have different configurations at the cysteine and proline residues, were synthesized by the solid-phase method and cyclized by the native chemical ligation reaction. Cyclization efficiently proceeded to give cyclic peptides, regardless of the difference in the configuration. The peptides were further derivatized to the corresponding desulfurized or methylated cyclic peptides at the Cys residues. The inhibition activity to αvß6 integrin binding was then analyzed by ELISA. The results showed that the activity varied depending on the difference in the configuration and modification of the cysteinyl prolyl ester (CPC) moiety, demonstrating the usefulness of this method in the search for a good inhibitor of the protein-protein interaction.

10.
Methods Enzymol ; 698: 169-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38886031

RESUMO

Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.


Assuntos
Peptídeos , Tiazolidinas , Tiazolidinas/química , Peptídeos/química , Dicetopiperazinas/química
11.
Biosens Bioelectron ; 261: 116508, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896977

RESUMO

Digital counting assays, that quantify targets by counting individual signal entities, provide a promising way for the sensitive analysis of biomarkers even at the single-molecule level. Considering the requirements of complex enzyme-catalyzed amplification techniques and specialized instruments in traditional digital counting biosensors, herein, a simple digital counting platform for microRNA (miRNA) analysis is developed by employing the miRNA-templated click chemical ligation to hinge ultrabright quantum dot-doped nanoparticles (QDNPs) on the bottom of microplate well. Compared with the traditional short miRNA-mediated sandwich hybridization mechanism, the click chemistry-mediated ligation featured enhanced stability, achieving higher sensitivity by directly counting the number of QDNPs with a common wide-field fluorescence microscope. Furthermore, enzyme-free cycling click ligation strategy is adopted to push the detection limit of miRNA down to a low level of 8 fM. What is more, taking advantages of the tunable emission wavelength and narrow emission spectra of fluorescent nanoparticles, the platform enables simultaneous detection of multiplex miRNA targets without cross interference. Benefiting from the simple operation, high sensitivity, and good generality, miRNA analysis in complex samples is successfully achieved. This method not only pioneers a new route for digital counting assays but also holds great potential in miRNA-related biological researches.


Assuntos
Técnicas Biossensoriais , Química Click , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Pontos Quânticos/química , Humanos , Limite de Detecção , Nanopartículas/química , Hibridização de Ácido Nucleico
12.
ChemMedChem ; 19(13): e202300692, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572578

RESUMO

Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.


Assuntos
Polissacarídeos , Polissacarídeos/química , Polissacarídeos/síntese química , Humanos , Glicosilação , Peptídeos/química , Peptídeos/síntese química , Proteínas/química , Proteínas/síntese química , Proteínas/metabolismo , Glicopeptídeos/síntese química , Glicopeptídeos/química
13.
Angew Chem Weinheim Bergstr Ger ; 136(1): e202312104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516647

RESUMO

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.

14.
Bioorg Med Chem ; 100: 117617, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306881

RESUMO

CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.


Assuntos
Receptores de Hialuronatos , Lipoilação , Transdução de Sinais , Receptores de Hialuronatos/química
15.
Chemistry ; 30(3): e202302969, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37815536

RESUMO

SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica
16.
Small Methods ; 8(1): e2300999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736703

RESUMO

There have been limited efforts to ligate the staple nicks in DNA origami which is crucial for their stability against thermal and mechanical treatments, and chemical and biological environments. Here, two near quantitative ligation methods are demonstrated for the native backbone linkage at the nicks in origami: i) a cosolvent dimethyl sulfoxide (DMSO)-assisted enzymatic ligation and ii) enzyme-free chemical ligation by CNBr. Both methods achieved over 90% ligation in 2D origami, only CNBr-method resulted in ≈80% ligation in 3D origami, while the enzyme-alone yielded 31-55% (2D) or 22-36% (3D) ligation. Only CNBr-method worked efficiently for 3D origami. The CNBr-mediated reaction is completed within 5 min, while DMSO-method took overnight. Ligation by these methods improved the structural stability up to 30 °C, stability during the electrophoresis and subsequent extraction, and against nuclease and cell lysate. These methods are straightforward, non-tedious, and superior in terms of cost, reaction time, and efficiency.


Assuntos
Nanoestruturas , Nanoestruturas/química , Dimetil Sulfóxido , Conformação de Ácido Nucleico , DNA/química , Endonucleases
17.
Angew Chem Int Ed Engl ; 63(1): e202312104, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955592

RESUMO

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.


Assuntos
Amidas , Metiltransferases , Metiltransferases/metabolismo , Metilação , Amidas/química , S-Adenosilmetionina/química , Ácidos Carboxílicos , Trifosfato de Adenosina/metabolismo , Biocatálise
18.
Toxicon ; 238: 107564, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113946

RESUMO

LaIT3, belonging to the ß-KTx family, is an insecticidal peptide in the venom of the Liocheles australasiae scorpion. Peptides in the family consist of two structural domains: an N-terminal domain with an α-helical structure common to antimicrobial peptides and a C-terminal domain with a structure stabilized by three disulfide bonds common to ion-channel blocking peptides. However, the contribution of each domain of LaIT3 to its activity remained unknown. In addition, some peptidic components are known to be enzymatically cleaved in the venom, which generates partial peptides. In our study, we searched for partial peptides of LaIT3 using LC/MS analysis and found peptides generated by cleavage at the central region of LaIT3. We subsequently synthesized full-length LaIT3 and its partial peptides to evaluate their insecticidal activity. The results, showing that only full-length LaIT3 is active, indicate that the insecticidal activity of LaIT3 depends on the presence of both N-terminal and C-terminal domains. Furthermore, LaIT3 did not exhibit the cytolytic activity against insect cells and showed only weak antibacterial activity. These findings suggest that its action is not due to a simple membrane disruption effect but instead due to actions on specific target molecules, including ion channels.


Assuntos
Inseticidas , Venenos de Escorpião , Animais , Sequência de Aminoácidos , Inseticidas/farmacologia , Inseticidas/química , Peçonhas , Escorpiões/química , Peptídeos/farmacologia , Peptídeos/química , Venenos de Escorpião/química
19.
Cell Chem Biol ; 31(5): 1000-1010.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113885

RESUMO

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.


Assuntos
Canais Iônicos Sensíveis a Ácido , Lisina , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Lisina/química , Lisina/metabolismo , Humanos , Animais , Modelos Moleculares , Processamento de Proteína
20.
Eur J Med Chem ; 260: 115747, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657270

RESUMO

Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.


Assuntos
Cisteína , Imunoconjugados , Biotina , Linhagem Celular , Ésteres , Imunoconjugados/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA