Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063392

RESUMO

This scientific work aims to optimize the preparation of titanium nitride coatings for selective H2 separation using the Reactive High Power Impulse Magnetron Sputtering technology (RHiPIMS). Currently, nitride-based thin films are considered promising membranes for hydrogen. The first series of TiNx/Si test samples were developed while changing the reactive gas percentage (N2%) during the process. Obtained coatings were extensively characterized in terms of morphology, composition, and microstructure. A 500 nm thick, dense TiNx coating was then deposited on a porous alumina substrate and widely investigated. Moreover, the as-prepared TiNx films were heat-treated in an atmosphere containing hydrogen in order to prove their chemical and structural stability; which revealed to be promising. This study highlighted how the RHiPIMS method permits fine control of the grown layer's stoichiometry and microstructure. Moreover, it pointed out the need for a protective layer to prevent surface oxidation of the nitride membrane by air and the necessity to deepen the study of TiNx/alumina interface in order to improve film/substrate adhesion.

2.
ACS Appl Mater Interfaces ; 13(5): 6678-6687, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33522787

RESUMO

The large-area preparation of excellent lubricating materials with good resistance to leakage and an oxidation atmosphere and ease of replenishment has remained a challenge. Here, inspired by the Nepenthes pitcher slippery surface, we have fabricated multifunctional lubricant-infused surfaces (LISs) via a scalable technique, in which the solid lubricants and the lubricant oil are reciprocally well-combined to overcome their respective weakness. The designed LIS coating exhibits a multiple lubrication ability with a coefficient of friction of 0.022 and ball wear rate of 2.62 × 10-18 m3·N-1·m-1 in air, which are 21 times and three orders of magnitude lower than those of the steel-steel contact under macroscale test conditions (10 N, 5 Hz), respectively. In addition, the outstanding water-repellent and self-cleaning LIS coating enables the resistance to the strong acid or base corrosion even after 30 days of immersion, and the excellent anticorrosion performance during the electrochemical corrosion test. With the exceptional lubrication, multifunctionality performance, and large-scale fabrication capacity, the prepared LIS coating should find potential applications in machines, pipelines, navigation, infrastructures, outdoor equipment, and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA