Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Talanta ; 280: 126711, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39167935

RESUMO

The pungency of chili peppers, the most popular hot spice used worldwide, is caused by capsaicinoids (CPDs), the content of which can vary greatly due to varietal differences and growing conditions. For the first time, a novel simple method for the fast determination of CPDs in chili peppers and chili products was developed based on adsorptive transfer cyclic square-wave voltammetry (AdTCSWV), using adsorption of lipophilic CPDs on an unmodified glassy carbon electrode surface from methanolic extracts of chili pepper samples. The CSWV is based on short oxidation of adsorbed CPDs to quinoid products, and their subsequent reduction and re-oxidation to provide specific analytical signals with a linear range from 0.05 to 1.00 mg L-1. This principle was also implemented in tandem coulometric and amperometric detection of CPDs after HPLC separation. The two-step electrochemical detection provides increased selectivity for CPDs in case of CPDs co-elution with other electrochemically oxidizable components that cannot be reversibly reduced.

2.
Front Microbiol ; 15: 1437553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161600

RESUMO

Chili pepper cultivation in the Indian subcontinent is severely affected by viral diseases, prompting the need for environmentally friendly disease control methods. To achieve this, it is essential to understand the molecular mechanisms of viral resistance in chili pepper. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) genes are known to provide broad-spectrum resistance to various phytopathogens by activating systemic acquired resistance (SAR). An in-depth understanding of NPR1 gene expression during begomovirus infection and its correlation with different biochemical and physiological parameters is crucial for enhancing resistance against begomoviruses in chili pepper. Nevertheless, limited information on chili CaNPR genes and their role in biotic stress constrains their potential in breeding for biotic stress resistance. By employing bioinformatics for genome mining, we identify 5 CaNPR genes in chili. The promoter regions of 1,500 bp of CaNPR genes contained cis-elements associated with biotic stress responses, signifying their involvement in biotic stress responses. Furthermore, these gene promoters harbored components linked to light, development, and hormone responsiveness, suggesting their roles in plant hormone responses and development. MicroRNAs played a vital role in regulating these five CaNPR genes, highlighting their significance in the regulation of chili genes. Inoculation with the begomovirus "cotton leaf curl Khokhran virus (CLCuKV)" had a detrimental effect on chili plant growth, resulting in stunted development, fibrous roots, and evident virus symptoms. The qRT-PCR analysis of two local chili varieties inoculated with CLCuKV, one resistant (V1) and the other susceptible (V2) to begomoviruses, indicated that CaNPR1 likely provides extended resistance and plays a role in chili plant defense mechanisms, while the remaining genes are activated during the early stages of infection. These findings shed light on the function of chili's CaNPR in biotic stress responses and identify potential genes for biotic stress-resistant breeding. However, further research, including gene cloning and functional analysis, is needed to confirm the role of these genes in various physiological and biological processes. This in-silico analysis enhances our genome-wide understanding of how chili CaNPR genes respond during begomovirus infection.

3.
Saudi J Biol Sci ; 31(8): 104046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38983130

RESUMO

Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.

4.
Food Chem X ; 23: 101581, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39040151

RESUMO

The aroma profile of fermented chili pepper was analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chromatography-olfactometry (GC-O). A total of 19 aroma-active compounds were detected, exhibiting aroma intensities spanning from 1.8 to 4.2. And 12 aroma-active compounds were determined as pivotal odorants through odor activity value (OAV) calculation. Concentrations of these aroma-active compounds were quantified and subsequently employed in reconstructing the aroma profile of fermented chili pepper. Quantitative descriptive sensory analysis and electronic nose analysis proved that the aroma profile of fermented chili pepper was basically reconstituted. Omission experiments confirmed that methyl salicylate, linalool, 2-methoxy-3-isobutylpyrazine, and phenylethyl alcohol were the key aroma-active compounds of fermented chili pepper. Moreover, the perceptual interactions between the key aroma-active compounds were investigated. It was found that methyl salicylate masked the floral aroma, while phenylethyl alcohol had an additive effect on the aroma of linalool and 2-methoxy-3-isobutylpyrazine.

5.
Toxics ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39058160

RESUMO

Repeated pesticide residue detection in chili peppers in the Republic of Korea has become a serious health concern. Thus, monitoring domestically grown and imported chili peppers for pesticide residues is of great significance. Here, we investigated pesticide residues detected in imported and domestically grown chili peppers using global pesticide residue monitoring data. Our analysis involved organizing inspection and detection data from different sources. Global pesticide residue monitoring data for chili peppers revealed 139 pesticide types, 43,532 inspections, and 3966 detections (detection rate, 9.11%). Peppers from Mexico were sampled the most (39,927 inspections) and showed the highest number of detected cases (2998 cases). Globally, the top 10 most frequently detected pesticides were clothianidin, imidacloprid, thiamethoxam, chlorpyrifos, thiacloprid, metalaxyl, myclobutanil, azoxystrobin, carbendazim, and cyhalothrin, with detection rates in the range of 10.52-28.66%. Furthermore, domestic chili pepper pesticide residue monitoring revealed 73 pesticide types, 3535 inspections, and 332 detected cases (detection rate, 9.39%), and the top 10 most frequently detected pesticides were chlorfenapyr, tebuconazole, flonicamid, dinotefuran, boscalid, pyraclostrobin, fluxametamide, thiamethoxam, pyridaben, and azoxystrobin, with detection rates in the range of 13.89-32.58%. These findings may serve as fundamental data for safety management related to chili pepper pesticide residues in the Republic of Korea.

6.
Foods ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998472

RESUMO

Chili peppers (Capsicum annuum L.) are economically valuable crops belonging to the Solanaceae family and are popular worldwide because of their unique spiciness and flavor. In this study, differences in the metabolomes of landrace (Subicho) and disease-resistant pepper cultivars (Bulkala and Kaltanbaksa) widely grown in Korea are investigated using a 1H NMR-based metabolomics approach. Specific metabolites were abundant in the pericarp (GABA, fructose, and glutamine) and placenta (glucose, asparagine, arginine, and capsaicin), highlighting the distinct physiological and functional roles of these components. Both the pericarp and placenta of disease-resistant pepper cultivars contained higher levels of sucrose and hexoses and lower levels of alanine, proline, and threonine than the traditional landrace cultivar. These metabolic differences are linked to enhanced stress tolerance and the activation of defense pathways, imbuing these cultivars with improved resistance characteristics. The present study provides fundamental insights into the metabolic basis of disease resistance in chili peppers, emphasizing the importance of multi-resistant varieties to ensure sustainable agriculture and food security. These resistant varieties ensure a stable supply of high-quality peppers, contributing to safer and more sustainable food production systems.

7.
J Food Sci ; 89(8): 5091-5100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955775

RESUMO

It is widely accepted that milk provides the greatest relief from capsaicin burn, an effect typically attributed to its fat content and temperature. Previously, Lawless et al. reported partitioning lipophilic capsaicin in fat reduces burn, whereas Green showed lower temperature reduces burn. Recent research shows that dairy and nondairy proteins also reduce capsaicin burn, suggesting that multiple factors reduce oral burn from chilies. Here, we investigated the effectiveness of palate cleansers with varied viscosities, temperatures, and sugar, fat, and protein content. Specifically, we tested ice cream, Italian ice, yogurt, lassi, cold water (4°C), and warm water (37°C). Participants rinsed with a 5 ppm capsaicin solution, followed by a palate cleanser, before rating burn intensity continuously for 2 min on a general Labeled Magnitude Scale. Inspection of the time-intensity (TI) curves revealed all palate cleansers performed better than warm water. Italian ice performed on par with cold water, which did better than yogurt. Pairwise comparisons showed that ice cream and lassi had significantly lower burn ratings at some time points relative to warm or cold water. We extracted scaffolding parameters for each TI curve, finding that ice cream and lassi had the lowest areas-under-the-curve and the greatest percent decrease from their maxima, with ice cream performing slightly better in both parameters. These data support the view that it is not just one characteristic of a product, but rather a combination of product factors that reduce oral burn, including fat content, protein content, and temperature. More research is required to determine the relative weight of these factors in combination, given the multiple mechanisms underlying burn reduction.


Assuntos
Capsaicina , Capsaicina/farmacologia , Humanos , Masculino , Adulto , Feminino , Temperatura , Sorvetes/análise , Adulto Jovem , Iogurte/análise , Animais
8.
Sci Rep ; 14(1): 17759, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085336

RESUMO

This study aimed to evaluate arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) levels in dried chili peppers from nine districts in Guizhou Province. These heavy metals, widely dispersed and capable of transferring to crops, pose potential health risks to humans. The assessment included modeling daily intake (EDI), target hazard quotient (THQ), total target hazard index (TTHQ), and target carcinogenic risk (TCR) to assess health risks across different population groups. Results showed chromium (0.9540 ± 0.301 mg/kg) and lead (0.8949 ± 0.266 mg/kg) had the highest concentrations, followed by arsenic (0.3287 ± 0.093 mg/kg) and cadmium (0.0627 ± 0.017 mg/kg). Children exhibited higher EDI values than adults, indicating greater health risks from dried chili pepper consumption at equivalent levels. THQ and TTHQ values were below 1 across all regions, indicating no significant health risks associated with dried chili pepper consumption. Similarly, TCR values were below 10-4 for all nine regions, indicating an acceptable level of carcinogenic risk. Overall, consuming dried chili peppers in Guizhou Province poses an acceptable health risk, but caution is advised, especially for children, to limit heavy metal exposure.


Assuntos
Capsicum , Contaminação de Alimentos , Metais Pesados , Capsicum/química , Medição de Risco , Humanos , China , Metais Pesados/análise , Contaminação de Alimentos/análise , Arsênio/análise , Cádmio/análise , Adulto , Chumbo/análise , Criança , Cromo/análise
9.
Food Res Int ; 190: 114657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945630

RESUMO

Because of its peculiar flavor, chili oil is widely used in all kinds of food and is welcomed by people. Chili pepper is an important raw material affecting its quality, and commercial chili oil needs to meet various production needs, so it needs to be made with different chili peppers. However, the current compounding method mainly relies on the experience of professionals and lacks the basis of objective numerical analysis. In this study, the chroma and capsaicinoids of different chili oils were analyzed, and then the volatile components were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion migration spectrometer (GC-IMS) and electronic nose (E-nose). The results showed that Zidantou chili oil had the highest L*, b*, and color intensity (ΔE) (52.76 ± 0.52, 88.72 ± 0.89, and 118.84 ± 1.14), but the color was tended to be greenyellow. Xinyidai chili oil had the highest a* (65.04 ± 0.2). But its b* and L* were relatively low (76.17 ± 0.29 and 45.41 ± 0.16), and the oil was dark red. For capsaicinoids, Xiaomila chili oil had the highest content of capsaicinoids was 2.68 ± 0.07 g/kg, Tianjiao chili oil had the lowest content of capsaicinoids was 0.0044 ± 0.0044 g/kg. Besides, 96 and 54 volatile flavor substances were identified by GC-MS and GC-IMS respectively. And the main volatile flavor substances of chili oil were aldehydes, alcohols, ketones, and esters. A total of 11 key flavor compounds were screened by the relative odor activity value (ROAV). Moguijiao chili oil and Zidantou chili oil had a prominent grass aroma because of hexanal, while Shizhuhong chili oil, Denglongjiao chili oil, Erjingtiao chili oil, and Zhoujiao chili oil had a prominent floral aroma because of 2, 3-butanediol. Chili oils could be well divided into 3 groups by the partial least squares discriminant analysis (PLS-DA). According to the above results, the 10 kinds of chili oil had their own characteristics in color, capsaicinoids and flavor. Based on quantitative physicochemical indicators and flavor substances, the theoretical basis for the compounding of chili oil could be provided to meet the production demand more scientifically and accurately.


Assuntos
Capsicum , Cromatografia Gasosa-Espectrometria de Massas , Óleos de Plantas , Paladar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Capsicum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos de Plantas/análise , Óleos de Plantas/química , Nariz Eletrônico , Capsaicina/análise , Aromatizantes/análise , Cor , Odorantes/análise
10.
Front Microbiol ; 15: 1388439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860216

RESUMO

Fusarium oxysporum f. sp. capsici (Foc) poses a significant position in agriculture that has a negative impact on chili plant in terms of growth, fruit quality, and yield. Biological control is one of the promising strategies to control this pathogen in crops. Chili is considered as one of the most important crops in the Hyderabad region that is affected by Fusarium wilt disease. The pathogen was isolated from the infected samples in the region and was confirmed by morphological characteristics and PCR with a band of 488 bp. The bacterial strains were isolated from the rhizosphere soil of healthy plant and also confirmed by PCR with a band of 1,542 bp.The molecular characterization of the fungal and bacterial strain has shown 99.9% homology with the retrieved sequences of Fusarium oxysporum f. sp. capsici and Bacillus subtilis from NCBI. The 1-month-old Ghotki chili plants were inoculated with 1×105 cfu spore/ml-1 suspension and confirmed that the FOC-1 is responsible for chili Fusarium wilt disease. Subsequently, among the 33 screened Bacillus strains, only 11 showed antagonistic activity against F. oxysporum. Out of these, only two strains (AM13 and AM21) have shown maximum antagonistic activity against the pathogen by reducing the infection and promoting growth parameters of chili plants under both in vitro and greenhouse conditions. The study suggested that biological control is the most promising control strategy for the management of Fusarium wilt of chili in the field.

11.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902876

RESUMO

Hot chili pepper (Capsicum annuum) cultivation has been on the rise in South East Asia to meet export demands. In Thailand, the top chili exporter in South East Asia, chili production has been severely hampered by pepper yellow leaf curl disease (YLCD) caused by the begomovirus pepper yellow leaf curl Thailand virus (PepYLCThV) (Chiemsombat et al., 2018; Suwor et al., 2021). In the neighbouring countries of Laos and Vietnam, a limited survey of chili fields (200 plants in total) in Savannakhet (Savannakhet University campus, n = 150), Laos and Quang Nam province (Ka Dang commune, Dong Giang district, n = 50), central Vietnam in 2023 led to the finding of eight plants (5 in Laos and 3 in Vietnam) exhibiting YLCD-like symptoms, which included bright yellow color in young leaves and leaf curl and mosaic chlorosis in mature leaves (Fig. S1). Total DNA was extracted from leaves of two symptomatic plants (one from Savannakhet and one from Quang Nam) using a cetyltrimethylammonium bromide-based DNA extraction protocol (Doyle & Doyle, 1987; Nguyen et al., 2023). Next, PCR were performed using newly designed PepYLCThV-specific primers based on PepYLCThV sequences in GenBank (Table 1). PCR products of expected sizes were observed in samples with disease symptoms, but not from DNA extracted from C. annuum (cv. VA.99999) grown at the Institute of Biotechnology in Thua Thien Hue, Vietnam (Fig. S2). The amplicons were Sanger sequenced (Apical Scientific, Selangor, Malaysia) and the complete bipartite genome sequence of two isolates ('Sava01' from Laos and 'QNam01' from Vietnam) were obtained. The sequences of the DNA-A component from isolates 'Sava01' (GenBank PP437580) and 'QNam01' (GenBank PP437581) exhibited the highest sequence identity of 99.2% and 94.7% with the PepYLCThV isolate 'ChiangDaoS1' (GenBank OM677627), respectively (Table 2). Conversely, the sequences of the DNA-B component from the isolates 'Sava01' (GenBank PP437579) and 'QNam01' (GenBank PP437582) exhibited the highest similarity of 91.8% and 90.9% with the PepYLCThV isolate 'KKN601' (GenBank MW715820), respectively (Table 2). These results confirmed the presence of PepYLCThV in hot chili pepper plants exhibiting YLCD-like symptoms in central Vietnam and Laos. Infectious clones of PepYLCThV DNA-A and DNA-B (isolate 'QNam01') were created based on the pLX-AS vector as described by Pasin (2022), and transformed into Agrobacterium tumefaciens EHA105. The resulting bacteria were cultured in LB broth containing rifampicin (25 µg/mL) and kanamycin (50 µg/mL) at 28°C and used for agroinoculation of Nicotiana benthamiana (n = 6) and C. annuum (cv. VA.99999, n = 6) (4-6 leaf plants) as described by Pasin (2022). In all N. benthamiana plants, agroinoculation with both DNA-A and DNA-B infectious clones caused stunted growth, severe leaf curl, with yellow and white patches 21 days post inoculation (Fig. S3). In C. annuum plants, symptom expression, which included leaf curl and stunted leaves with yellow mosaic patterns, was observed in two out of six inoculated plants six weeks postinoculation (Fig. S3). PCR assays confirmed the presence of PepYLCThV DNA in N. benthamiana and C. annuum symptomatic leaves (Fig. S4). To our knowledge, this is the first report of pepper yellow leaf curl Thailand virus in hot chili pepper in Laos and central Vietnam. Appropriate containment and management strategies should be developed and implemented to control the spread of this disease in hot chili pepper crops in both countries.

12.
Front Nutr ; 11: 1410256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887506

RESUMO

Background: The effects of chili intake on overweight and obesity have attracted significant interest in recent years. This study aimed to investigate the correlation between chili consumption frequency, body mass index (BMI), and obesity prevalence in the American population. Methods: Data from participants in National Health and Nutrition Examination Survey (NHANES) 2003-2006 were collected. We enrolled 6,138 participants with complete information on chili intake and BMI in this cross-sectional study. Multivariate logistic regression and sensitivity analyses were conducted to explore the relationship between chili intake frequency and BMI and obesity. Subgroup analyses and interaction tests were employed to assess the stability of the observed correlation. Results: Increased chili consumption frequency was linked to higher BMI values and a greater prevalence of obesity. Compared to the non-consumption group, the highest frequency group had a multivariate-adjusted ß of 0.71 (95% CI: 0.05, 1.38) for BMI and an OR of 1.55 (95% CI: 1.22, 1.97) for obesity in the fully adjusted model. This positive association between chili intake frequency and obesity was more pronounced in females and older adults (≥ 60 years old). Conclusion: Our findings suggest a positive association between chili intake frequency and BMI and obesity in United States adults, suggesting that controlling chili intake frequency could potentially contribute to improved weight management in the general population.

13.
Front Plant Sci ; 15: 1367738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863551

RESUMO

Currently, foliar diseases of chili have significantly impacted both yield and quality. Despite effective advancements in deep learning techniques for the classification of chili leaf diseases, most existing classification models still face challenges in terms of accuracy and practical application in disease identification. Therefore, in this study, an optimized and enhanced convolutional neural network model named MCCM (MCSAM-ConvNeXt-MSFFM) is proposed by introducing ConvNeXt. The model incorporates a Multi-Scale Feature Fusion Module (MSFFM) aimed at better capturing disease features of various sizes and positions within the images. Moreover, adjustments are made to the positioning, activation functions, and normalization operations of the MSFFM module to further optimize the overall model. Additionally, a proposed Mixed Channel Spatial Attention Mechanism (MCSAM) strengthens the correlation between non-local channels and spatial features, enhancing the model's extraction of fundamental characteristics of chili leaf diseases. During the training process, pre-trained weights are obtained from the Plant Village dataset using transfer learning to accelerate the model's convergence. Regarding model evaluation, the MCCM model is compared with existing CNN models (Vgg16, ResNet34, GoogLeNet, MobileNetV2, ShuffleNet, EfficientNetV2, ConvNeXt), and Swin-Transformer. The results demonstrate that the MCCM model achieves average improvements of 3.38%, 2.62%, 2.48%, and 2.53% in accuracy, precision, recall, and F1 score, respectively. Particularly noteworthy is that compared to the original ConvNeXt model, the MCCM model exhibits significant enhancements across all performance metrics. Furthermore, classification experiments conducted on rice and maize disease datasets showcase the MCCM model's strong generalization performance. Finally, in terms of application, a chili leaf disease classification website is successfully developed using the Flask framework. This website accurately identifies uploaded chili leaf disease images, demonstrating the practical utility of the model.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38700794

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-ß1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-ß/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.

15.
Food Chem ; 452: 139463, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718451

RESUMO

In this study, a QuEChERS method based on citrate was developed and utilized for the analysis of twelve neonicotinoid pesticides in fresh red chilies, fresh green chilies, and dried chilies, coupled with ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS). In the sample preparation, acetonitrile containing 1% formic acid was used as the extraction solvent. Anhydrous sodium sulfate replaced the traditional anhydrous magnesium sulfate for water removal, effectively eliminating the issues of salt caking. Graphitized carbon black, octadecyl silica, and primary secondary amine were used as cleaning agents. The method showed good sensitivity, with the limits of quantification below 0.03 mg/kg for fresh chilies and below 0.15 mg/kg for dried chilies. Values of matrix effects ranged from -19.5% to 8.4%, and the recovery was 86.9% - 105.2%. The analytical method provided an effective tool for the high throughput detection of neonicotinoid pesticide residues in multiple chili matrices.


Assuntos
Capsicum , Contaminação de Alimentos , Resíduos de Praguicidas , Cromatografia Líquida de Alta Pressão , Capsicum/química , Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Resíduos de Praguicidas/isolamento & purificação , Espectrometria de Massas/métodos , Neonicotinoides/análise , Neonicotinoides/química , Espectrometria de Massas em Tandem/métodos
16.
J Environ Sci Health B ; 59(7): 361-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774990

RESUMO

Field and lab experiments explored tetraniliprole dissipation in chili plants. A supervised trial in Devarayapuram village, Coimbatore, assessed the CO2 chili variety (December-March 2018-2019). Using the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method and ultra-high-performance liquid chromatography (UHPLC), samples were collected up to 15 d post-application. Initial tetraniliprole deposits on chili fruits, 1-h post-spray, were 0.898 and 1.271 µg g-1 at single and double doses. Over 80% dissipated within 5 d, reaching below detection limits by day 7 and 10 for single and double doses, respectively. Transformation analysis favored first-order kinetics. Tetraniliprole half-life on chili fruit was 1.49 and 1.53 d at recommended and double doses. The safe waiting period was 4.16 and 5.04 d for 60 and 120 g a.i ha-1. This study provides insights into tetraniliprole dynamics in chili plants, crucial for effective pesticide management.


Assuntos
Capsicum , Capsicum/química , Frutas/química , Cromatografia Líquida de Alta Pressão , Meia-Vida , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Contaminação de Alimentos/análise , Cinética
17.
Plant J ; 119(2): 720-734, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713838

RESUMO

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas de Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Potyvirus/fisiologia
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124238, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593543

RESUMO

A simple smartphone-based digital image colorimetry was proposed for the determination of total capsaicinoid content and the assessment of chili pepper pungency. The biobased solvent D-limonene was used for the first time to isolate analytes. Capsaicinoids were efficiently separated from chili pepper by solid-liquid extraction with D-limonene followed by partitioning of the analytes into the ammonium hydroxide solution to eliminate the matrix interference effect. For colorimetric detection of total capsaicinoid content, a selective chromogenic reaction was performed using Gibbs reagent (2,6-dichloroquinone-4-chloroimide). Measurements were performed using a smartphone-based setup and included image analysis with the program ImageJ. The limit of detection of the proposed procedure was 0.15 mg g-1. The intra-day repeatability did not exceed 10.0 %. The inter-day repeatability was less than 16.5 %. The comparison of the smartphone-based procedure with high-performance liquid chromatography showed satisfactory results.


Assuntos
Capsaicina , Capsicum , Colorimetria , Extratos Vegetais , Smartphone , Capsicum/química , Colorimetria/métodos , Capsaicina/análise , Capsaicina/análogos & derivados , Extratos Vegetais/química , Extratos Vegetais/análise , Limite de Detecção , Reprodutibilidade dos Testes
19.
Cancers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672692

RESUMO

Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.

20.
Foods ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672882

RESUMO

Chili bean paste is a traditional flavor sauce, and its flavor compounds are closely related to its microflora. This study focused on investigating the content of bioactive compounds, flavor compounds, and microbial communities during the post-ripening fermentation of chili bean paste, aiming to provide a reference for improving the flavor of chili bean paste by regulating microorganisms. Compared to no post-ripening fermentation, the content of organic acids increased significantly (p < 0.05), especially that of citric acid (1.51 times). Glutamic acid (Glu) was the most abundant of the 17 free amino acids at 4.0 mg/g. The aroma profiles of the samples were significantly influenced by fifteen of the analyzed volatile compounds, especially methyl salicylate, methyl caproate, and 2-octanol (ROAV > 1). Latilactobacillus (27.45%) and Pseudomonas (9.01%) were the dominant bacterial genera, and Starmerella (32.95%) and Pichia (17.01%) were the dominant fungal genera. Weissella, Lacticaseibacillus, Pichia, and Kazachstania had positive effects on volatile flavoring compounds, which enriched the texture and flavor of the chili bean paste. Therefore, the microbial-community activity during the post-ripening fermentation is the key to enhance the flavor quality of the product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA