Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 32(19): e1907376, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32243008

RESUMO

Diffraction gratings are important for modern optical components, such as optical multiplexers and signal processors. Although liquid crystal (LC) gratings based on thermotropic LCs have been extensively explored, they often require expensive molecules and complicated manufacturing processes. Lyotropic LCs, which can be broadly obtained from both synthetic and natural sources, have not yet been applied in optical gratings. Herein, a facile grating fabrication method using a biosourced lyotropic LC formed by cellulose nanocrystals (CNCs), a material extracted from plants, is reported. Hydrogel sheets with vertically aligned uniform periodic structures are obtained by fixing the highly oriented chiral nematic LC of CNCs in polymer networks under the cooperative effects of gravity on phase separation and a magnetic field on LC orientation. The hydrogel generates up to sixth-order diffraction spots and shows linear polarization selectivity, with tunable grating periodicity controlled through LC concentration regulation. This synthesis strategy can be broadly applied to various grating materials and opens up a new area of optical materials from lyotropic LCs.

2.
Materials (Basel) ; 8(11): 7873-7888, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-28793684

RESUMO

Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA