Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 300(9): 107712, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178949

RESUMO

Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.

2.
Ocul Surf ; 34: 30-37, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871216

RESUMO

PURPOSE: Ocular surface hydration is critical for eye health and its impairment can lead to dry eye disease. Extracellular calcium-sensing receptor (CaSR) is regulator of ion transport in epithelial cells expressing cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. CFTR is also a major ion channel in ocular surface epithelia, however the roles of CaSR in ocular surface are not well studied. This study aims to investigate expression and functional roles of CaSR in ocular surface. METHODS: CaSR immunostaining was performed in mouse and human cornea and conjunctiva. Ocular surface potential difference (OSPD) and tear fluid volume measurements were performed in mice with topically applied cinacalcet (CaSR activator) and NPS-2143 (CaSR inhibitor). RESULTS: CaSR is expressed in corneal and conjunctival epithelia of mice and humans. Topically administered CaSR activator cinacalcet inhibits cAMP agonist forskolin-induced Cl- secretion and CFTR activity up to 90 %. CaSR inhibitor NPS-2143 stimulates CFTR-mediated Cl- secretion in mouse ocular surface, after which cAMP agonist forskolin had minimal additional secretory effects. Single dose NPS-2143 treatment (as an eye drop) increases tear fluid volume in mice by ∼60 % compared to vehicle treatment. NPS-2143 effect on tear volume lasts at least 8 h after single dose. CONCLUSIONS: CaSR is a key regulator of ocular surface ion transport and CaSR inhibition promotes Cl- and tear secretion in the ocular surface. If they are found to be effective in in dry eye models, CaSR inhibitors (currently in clinical development) can potentially be repurposed as novel prosecretory treatments for dry eye disease.

3.
J Biol Chem ; 300(7): 107437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838776

RESUMO

Together with its ß-subunit OSTM1, ClC-7 performs 2Cl-/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, "HOD syndrome"), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl- uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl-/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.


Assuntos
Canais de Cloreto , Doenças por Armazenamento dos Lisossomos , Lisossomos , Humanos , Masculino , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Mutação com Ganho de Função , Células HEK293 , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Lisossomos/genética , Proteínas de Membrana , Mutação de Sentido Incorreto , Fosfatos de Fosfatidilinositol/metabolismo , Ubiquitina-Proteína Ligases , Vacúolos/metabolismo , Vacúolos/genética , Vacúolos/patologia
4.
J Biol Chem ; 300(5): 107261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582450

RESUMO

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Assuntos
Antiporters , Transportadores de Sulfato , Animais , Humanos , Antiporters/metabolismo , Antiporters/genética , Antiporters/química , Sítios de Ligação , Células HEK293 , Ligação de Hidrogênio , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Multimerização Proteica , Estrutura Secundária de Proteína
5.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541449

RESUMO

Coastal regions, home to a significant portion of the world's population, confront a formidable challenge: the corrosive impact of chloride-rich environments on vital infrastructure. These areas often host essential transportation systems, such as trains and metros, reliant on pre-existing electrical infrastructure. Unfortunately, complete isolation of this infrastructure is rarely feasible, resulting in the emergence of stray currents and electrical potentials that expedite corrosion processes. When coupled with conducive mediums facilitating chemical electrocell formation, the corrosion of reinforced concrete elements accelerates significantly. To combat this issue, international standards have been established, primarily focusing on augmenting the thickness of reinforcement bar covers and restricting stray voltage between rails and the ground. Nevertheless, these measures only provide partial solutions. When subjected to service loads, these elements develop cracks, especially when exposed to stray currents and chlorides, dramatically increasing corrosion rates. Corrosion products, which expand in volume compared to steel, exert internal forces that widen cracks, hastening the deterioration of structural elements. The study deals with the degradation of reinforced concrete columns under the combined action of loads, chloride-rich environments, and electrical voltage-simulating stray currents. In these conditions, degradation and reduction of load-bearing capacity accelerate compared to unloaded conditions, significantly amplifying the corrosion rate. Astonishingly, even in the absence of mechanical loads, stray currents alone induce tensile stresses in elements due to corrosion product formation, leading to longitudinal cracks parallel to the reinforcement bars.

6.
Angew Chem Int Ed Engl ; 63(17): e202318811, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38419371

RESUMO

In nature, ceramides are a class of sphingolipids possessing a unique ability to self-assemble into protein-permeable channels with intriguing concentration-dependent adaptive channel cavities. However, within the realm of artificial ion channels, this interesting phenomenon is scarcely represented. Herein, we report on a novel class of adaptive artificial channels, Pn-TPPs, based on PEGylated cholic acids bearing triphenylphosphonium (TPP) groups as anion binding motifs. Interestingly, the molecules self-assemble into chloride ion channels at low concentrations while transforming into small molecule-permeable nanopores at high concentrations. Moreover, the TPP groups endow the molecules with mitochondria-targeting properties, enabling them to selectively drill holes on the mitochondrial membrane of cancer cells and subsequently trigger the caspase 9 apoptotic pathway. The anticancer efficacies of Pn-TPPs correlate with their abilities to form nanopores. Significantly, the most active ensembles formed by P5-TPP exhibits impressive anticancer activity against human liver cancer cells, with an IC50 value of 3.8 µM. While demonstrating similar anticancer performance to doxorubicin, P5-TPP exhibits a selectivity index surpassing that of doxorubicin by a factor of 16.8.


Assuntos
Nanoporos , Humanos , Canais Iônicos , Compostos Organofosforados/química , Doxorrubicina/química
7.
Materials (Basel) ; 17(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399181

RESUMO

Chloride transport within concrete is critical for the durability of reinforced concrete structures; however, its diffusion under the coupling action of temperature and humidity has not been fully comprehended. Therefore, in this work, the coupling effects of temperature, relative humidity, and mineral admixtures on chloride transport in concrete were investigated through experimental and numerical simulation work. The results show that the chloride diffusion coefficient decreases with the decreased temperature and growth of relative humidity; however, the chloride concentration on the concrete surface is increased with the growth of temperature and relative humidity. Moreover, compounding about 15% fly ash (FA) and 30% granulated ground blast furnace slag (GGBS) to replace the cement is the most beneficial for improving the antichloride capacity of concrete, considering also the strength. In addition, the numerical simulation considering the coupled effect of temperature and relative humidity of chloride transport in concrete has good agreement with that of experimental results.

8.
Chemistry ; 30(22): e202304222, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38270386

RESUMO

ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.

9.
Angew Chem Int Ed Engl ; 63(3): e202314666, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864456

RESUMO

The development of stimuli-responsive artificial H+ /Cl- ion channels, capable of specifically disturbing the intracellular ion homeostasis of cancer cells, presents an intriguing opportunity for achieving high selectivity in cancer therapy. Herein, we describe a novel family of non-covalently stapled self-assembled artificial channels activatable by biocompatible visible light at 442 nm, which enables the co-transport of H+ /Cl- across the membrane with H+ /Cl- transport selectivity of 6.0. Upon photoirradiation of the caged C4F-L for 10 min, 90 % of ion transport efficiency can be restored, giving rise to a 10.5-fold enhancement in cytotoxicity against human colorectal cancer cells (IC50 =8.5 µM). The mechanism underlying cancer cell death mediated by the H+ /Cl- channels involves the activation of the caspase 9 apoptosis pathway as well as the scarcely reported disruption of the autophagic processes. In the absence of photoirradiation, C4F-L exhibits minimal toxicity towards normal intestine cells, even at a concentration of 200 µM.


Assuntos
Canais Iônicos , Neoplasias , Humanos , Canais Iônicos/metabolismo , Transporte de Íons , Luz , Cloretos/metabolismo
10.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110744

RESUMO

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Assuntos
Rim , Néfrons , Animais , Camundongos , Humanos , Pressão Sanguínea/fisiologia , Transportadores de Sulfato , Rim/metabolismo , Néfrons/metabolismo , Cloreto de Sódio , Cloretos/metabolismo , Proteínas de Transporte de Ânions/genética
11.
Life (Basel) ; 13(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374100

RESUMO

Endosomes and lysosomes are intracellular vesicular organelles with important roles in cell functions such as protein homeostasis, clearance of extracellular material, and autophagy. Endolysosomes are characterized by an acidic luminal pH that is critical for proper function. Five members of the gene family of voltage-gated ChLoride Channels (CLC proteins) are localized to endolysosomal membranes, carrying out anion/proton exchange activity and thereby regulating pH and chloride concentration. Mutations in these vesicular CLCs cause global developmental delay, intellectual disability, various psychiatric conditions, lysosomal storage diseases, and neurodegeneration, resulting in severe pathologies or even death. Currently, there is no cure for any of these diseases. Here, we review the various diseases in which these proteins are involved and discuss the peculiar biophysical properties of the WT transporter and how these properties are altered in specific neurodegenerative and neurodevelopmental disorders.

12.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297112

RESUMO

Chloride transport is a vital issue in the research on the durability of alkali-activated materials (AAMs). Nevertheless, due to its miscellaneous types, complex mix proportions, and limitations in testing methods, the reports of different studies are numerous and vary greatly. Therefore, in order to promote the application and development of AAMs in chloride environments, this work systematically reviews the chloride transport behavior and mechanism, solidification of chloride, influencing factors, and test method of chloride transport of AAMs, along with conclusions regarding instructive insights to the chloride transport problem of AAMs in future work.

13.
Materials (Basel) ; 16(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176346

RESUMO

One of the key problems that affect the durability of reinforced concrete structures is the corrosion of rebar induced by chloride. Despite the complicated transport mechanism of chloride ions in cementitious materials, diffusion is still the key mechanism of chloride ingress. The determination of the chloride diffusion coefficient will help to predict the chloride profile inside the cementitious materials and estimate the service life with regard to chloride-induced corrosion. However, this paper shows that the chloride diffusion coefficient in the literature is sometimes misunderstood. Such a misunderstanding results in the overestimation of the chloride resistance of cementitious materials. To clarify the chloride diffusion coefficient, this paper first presents the steady- and non-steady-state diffusion equations in cementitious materials. The factors that influence the diffusive flux are identified. The effective and apparent diffusion coefficients are then clearly explained and properly defined. We also point out the obscure definitions of the effective diffusion coefficient in the literature. The varied definitions of the effective diffusion coefficient are the result of the consideration of different factors affecting the diffusion process. Subsequently, this paper discusses two natural diffusion test methods that are frequently employed in cementitious materials to measure the chloride diffusion coefficient. The influencing factors considered by the measured diffusion coefficients are analyzed in detail. Then, the diffusion coefficients determined in some of the studies are reviewed. It is shown that three typical errors could occur when numerically determining the diffusion coefficients.

14.
Chemistry ; 29(44): e202301020, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37218621

RESUMO

Single molecules that co-transport cations as well as anions across lipid membranes are few despite their high biological utility. The elegant yet simple lipidomimmetic peptide design herein enables efficient HCl transport without the use of any external additives for proton transport. The carboxylic acids in the dipeptide scaffold provide a handle to append two long hydrophobic tails and also provide a polar hydrophilic carboxylate group. The peptide central unit also provides NH sites for anion binding. Protonation of the carboxylate group coupled with the weak halide binding of the terminal NH group results in HCl transport with transport rates of H+ >Cl- . The lipid-like structure also facilitates seamless membrane integration and flipping of the molecule. The biocompatibility, design simplicity, and potential pH regulation of these molecules open up several avenues for their therapeutic use.


Assuntos
Lipídeos , Peptídeos , Transporte de Íons , Ânions , Transporte Biológico
16.
EMBO J ; 41(23): e110169, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239040

RESUMO

The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.


Assuntos
Potássio , Sódio , Membro 2 da Família 12 de Carreador de Soluto , Humanos , Microscopia Crioeletrônica , Potássio/metabolismo , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/química
17.
Membranes (Basel) ; 12(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35323767

RESUMO

Impressive work has been completed in recent decades on the transmembrane anion transport capability of small synthetic transporters from many different structural classes. However, very few predicting models have been proposed for the fast screening of compound libraries before spending time and resources on the laboratory bench for their synthesis. In this work, a new approach is presented which aims at describing the transport process by taking all the steps into explicit consideration, and includes all possible experiment-derived parameters. The algorithm is able to simulate the macroscopic experiments performed with lipid vesicles to assess the ion-transport ability of the synthetic transporters following a non-electrogenic uniport mechanism. While keeping calculation time affordable, the final goal is the curve-fitting of real experimental data-so, to obtain both an analysis and a predictive tool. The role and the relative weight of the different parameters is discussed and the agreement with the literature is shown by using the simulations of a virtual benchmark case. The fitting of real experimental curves is also shown for two transporters of different structural type.

18.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159175

RESUMO

CLC proteins comprise Cl- channels and anion/H+ antiporters involved in several fundamental physiological processes. ClC-7 is a lysosomal Cl-/H+ antiporter that together with its beta subunit Ostm1 has a critical role in the ionic homeostasis of lysosomes and of the osteoclasts' resorption lacuna, although the specific underlying mechanism has so far remained elusive. Mutations in ClC-7 cause osteopetrosis, but also a form of lysosomal storage disease and neurodegeneration. Interestingly, both loss-of- and gain-of-function mutations of ClC-7 can be pathogenic, but the mechanistic implications of this finding are still unclear. This review will focus on the recent advances in our understanding of the biophysical properties of ClC-7 and of its role in human diseases with a focus on osteopetrosis and neurodegeneration.


Assuntos
Reabsorção Óssea , Canais de Cloreto , Doenças por Armazenamento dos Lisossomos , Osteopetrose , Antiporters/genética , Antiporters/metabolismo , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia
19.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683521

RESUMO

Durability improvement is always important for steel-concrete structures exposed to chloride salt environment. The present research investigated the influence of a novel nano-precursor inhibiting material (NPI), organic carboxylic acid ammonium salt, on the mechanical and transport properties of concrete. The NPI caused a slight reduction in the strength of concrete at later ages. NPI significantly decreased water absorption and slowed down the speed of water absorption of concrete. In addition, the NPI decreased the charge passed and the chloride migration coefficient, and the results of the natural chloride diffusion showed that the NPI decreased the chloride concentration and the chloride diffusion coefficient. The NPI effectively improved the resistance of chloride penetration into testing concrete. The improvement in the impermeability of concrete was ascribed to the incorporation with the NPI, which resulted in increasing the contact angle of cement pastes. The contact angle went up from 17.8° to 85.8° for 0% and 1.2% NPI, respectively, and cement pastes became less hydrophilic. Some small pore throats were unconnected. Besides, the NPI also optimized the pore size distribution of hardened cement paste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA