Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Food Sci Biotechnol ; 33(11): 2623-2630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144192

RESUMO

Cholesterol is a component of cell membranes and a precursor of hormones, and excess levels are associated with disease development; therefore, it must be maintained within the normal range. Silkworm cocoons are known to contain bioactive substances. Therefore, we compared the bioactivities of pigmented and white silkworm cocoons. Sericin extract of the Yeonnokjam (YN) variety, which contained a high flavonoid content, showed the highest antioxidant activity and inhibited cholesterol biosynthetic enzyme activity. YN-fed mice showed a 26% reduction in serum low-density lipoprotein cholesterol level. In addition, a 27% decrease in cholesterol accumulation in the liver was observed. Mechanistically, YN reduced the expression of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 2 proteins by 34 and 13%, respectively. In conclusion, YN suppresses cholesterol synthesis in the liver and stimulates bile acid secretion, which contributes to reduction in cholesterol levels, suggesting its potential as a cholesterol-lowering agent.

2.
Adv Sci (Weinh) ; : e2405826, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120559

RESUMO

Ferroptosis, an iron- and reactive oxygen species (ROS)-dependent cell death, holds significant promise for tumor therapy due to its ability to induce lipid peroxidation (LPO) and trigger antitumor immune responses. However, elevated cholesterol levels in cancer cells impede ferroptosis and compromise immune function. Here, a novel nanozyme, Fe-MOF/CP, composed of iron metal-organic framework (Fe-MOF) nanoparticles loaded with cholesterol oxidase and PEGylation for integrated ferroptosis and immunotherapy is introduced. Fe-MOF/CP depletes cholesterol and generates hydrogen peroxide, enhancing ROS levels and inducing LPO, thereby promoting ferroptosis. This process disrupts lipid raft integrity and downregulates glutathione peroxidase 4 and ferroptosis suppressor protein 1, further facilitating ferroptosis. Concurrently, Fe-MOF/CP augments immunogenic cell death, reduces programmed death-ligand 1 expression, and revitalizes exhausted CD8+ T cells. In vivo studies demonstrate significant therapeutic efficacy in abscopal, metastasis, and recurrent tumor models, highlighting the robust antitumor immune responses elicited by Fe-MOF/CP. This study underscores the potential of Fe-MOF/CP as a multifunctional therapeutic agent that combines ferroptosis and immunotherapy, offering a promising strategy for effective and durable cancer treatment.

3.
Mol Pharmacol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151949

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) deficiencies represent severe disorders characterized by aberrant cholesterol esterification in plasma, leading to life-threatening conditions. This study investigates the efficacy of Compound 2, a piperidinyl pyrazolopyridine allosteric activator that binds the membrane-binding domain of LCAT, in rescuing the activity of LCAT variants associated with disease. The variants K218N, N228K, and G230R, all located in the cap and lid domains of LCAT, demonstrated notable activity restoration in response to Compound 2. Molecular dynamics simulations and structural modeling indicate that these mutations disrupt the lid and membrane binding domain, with Compound 2 potentially dampening these structural alterations. Conversely, variants such as M252K and F382V in the cap and a/b-hydrolase domain, respectively, exhibited limited or no rescue by Compound 2. Future research should prioritize in vivo investigations that would validate the therapeutic potential of Compound 2 and related activators in familial LCAT deficiency patients with mutations in the cap and lid of the enzyme. Significance Statement Lecithin:cholesterol acyltranferase (LCAT) catalyzes the first step of reverse cholesterol transport, namely the esterification of cholesterol in HDL particles. Somatic mutations in LCAT lead to excess cholesterol in blood plasma and, in severe cases, kidney failure. In this study we show that recently discovered small molecule activators can rescue function in LCAT deficient variants when the mutations occur in the lid and cap domains of the enzyme.

5.
J Lipid Res ; : 100624, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154733

RESUMO

Chronic kidney disease (CKD) is often associated with decreased activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for HDL maturation. This reduction in LCAT activity may potentially contribute to an increased risk of cardiovascular mortality in patients with CKD. The objective of this study was to investigate the association between LCAT activity in patients with CKD and the risk of adverse outcomes. We measured serum LCAT activity and characterized lipoprotein profiles using nuclear magnetic resonance spectroscopy in 453 non-dialysis CKD patients from the CARE FOR HOMe study. LCAT activity correlated directly with smaller HDL particle size, a type of HDL potentially linked to greater cardiovascular protection. Over a mean follow-up of 5.0 ± 2.2 years, baseline LCAT activity was inversely associated with risk of death (standardized HR 0.62, 95% CI 0.50-0.76; p<0.001) and acute decompensated heart failure (ADHF) (standardized HR 0.67, 95% CI 0.52-0.85; p=0.001). These associations remained significant even after adjusting for other risk factors. Interestingly, LCAT activity was not associated with the incidence of atherosclerotic cardiovascular events or kidney function decline during the follow-up. To conclude, our findings demonstrate that LCAT activity is independently associated with all-cause mortality and ADHF in patients with CKD. Moreover, LCAT activity is directly linked to smaller, potentially more protective HDL subclasses.

6.
Cell Host Microbe ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106870

RESUMO

Identification of potential bacterial players in colorectal tumorigenesis has been a focus of intense research. Herein, we find that Clostridium symbiosum (C. symbiosum) is selectively enriched in tumor tissues of patients with colorectal cancer (CRC) and associated with higher colorectal adenoma recurrence after endoscopic polypectomy. The tumorigenic effect of C. symbiosum is observed in multiple murine models. Single-cell transcriptome profiling along with functional assays demonstrates that C. symbiosum promotes the proliferation of colonic stem cells and enhances cancer stemness. Mechanistically, C. symbiosum intensifies cellular cholesterol synthesis by producing branched-chain amino acids (BCAAs), which sequentially activates Sonic hedgehog signaling. Low dietary BCAA intake or blockade of cholesterol synthesis by statins could partially abrogate the C. symbiosum-induced cell proliferation in vivo and in vitro. Collectively, we reveal C. symbiosum as a bacterial driver of colorectal tumorigenesis, thus identifying a potential target in CRC prediction, prevention, and treatment.

7.
Biol Pharm Bull ; 47(8): 1429-1436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135238

RESUMO

Farnesoid X receptor (FXR) is a nuclear receptor that regulates the synthesis and enterohepatic circulation of bile acids (BAs). It also regulates lipid and carbohydrate metabolism, making FXR ligands potential therapeutic agents for systemic and/or hepatic metabolic disorders. We previously synthesized a series of FXR antagonists and showed that oral administration of FLG249 reduced the expression of several FXR target genes in the mouse ileum. Here, we investigated the effects of FLG249 on lipid metabolism in mice fed a high-fat diet (HFD). When FLG249 was administered for 4 weeks to HFD-induced obese mice, it altered the expression of genes related to BA metabolism, ceramide synthesis and fatty acid ß-oxidation, improving lipid metabolism in the liver and ileum without decreasing body weight. These findings suggest that FLG249 has the potential to be a low toxicity pharmaceutical compound and likely acts as a nonsteroidal FXR antagonist to improve lipid metabolism disorders.


Assuntos
Colesterol , Dieta Hiperlipídica , Fígado , Camundongos Endogâmicos C57BL , Obesidade , Receptores Citoplasmáticos e Nucleares , Triglicerídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/sangue , Colesterol/sangue , Triglicerídeos/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Camundongos , Camundongos Obesos , Íleo/metabolismo , Íleo/efeitos dos fármacos
8.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125645

RESUMO

Stress-induced alterations in central neuron metabolism and function are crucial contributors to depression onset. However, the metabolic dysfunctions of the neurons associated with depression and specific molecular mechanisms remain unclear. This study initially analyzed the relationship between cholesterol and depression using the NHANES database. We then induced depressive-like behaviors in mice via restraint stress. Applying bioinformatics, pathology, and molecular biology, we observed the pathological characteristics of brain cholesterol homeostasis and investigated the regulatory mechanisms of brain cholesterol metabolism disorders. Through the NHANES database, we initially confirmed a significant correlation between cholesterol metabolism abnormalities and depression. Furthermore, based on successful stress mouse model establishment, we discovered the number of cholesterol-related DEGs significantly increased in the brain due to stress, and exhibited regional heterogeneity. Further investigation of the frontal cortex, a brain region closely related to depression, revealed stress caused significant disruption to key genes related to cholesterol metabolism, including HMGCR, CYP46A1, ACAT1, APOE, ABCA1, and LDLR, leading to an increase in total cholesterol content and a significant decrease in synaptic proteins PSD-95 and SYN. This indicates cholesterol metabolism affects neuronal synaptic plasticity and is associated with stress-induced depressive-like behavior in mice. Adeno-associated virus interference with NR3C1 in the prefrontal cortex of mice subjected to short-term stress resulted in reduced protein levels of NRIP1, NR1H2, ABCA1, and total cholesterol content. At the same time, it increased synaptic proteins PSD95 and SYN, effectively alleviating depressive-like behavior. Therefore, these results suggest that short-term stress may induce cholesterol metabolism disorders by activating the NR3C1/NRIP1/NR1H2 signaling pathway. This impairs neuronal synaptic plasticity and consequently participates in depressive-like behavior in mice. These findings suggest that abnormal cholesterol metabolism in the brain induced by stress is a significant contributor to depression onset.


Assuntos
Colesterol , Depressão , Lobo Frontal , Estresse Psicológico , Animais , Camundongos , Colesterol/metabolismo , Depressão/metabolismo , Depressão/etiologia , Estresse Psicológico/metabolismo , Lobo Frontal/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
9.
Exp Neurol ; 380: 114909, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39097074

RESUMO

Functional and pathological recovery after spinal cord injury (SCI) is often incomplete due to the limited regenerative capacity of the central nervous system (CNS), which is further impaired by several mechanisms that sustain tissue damage. Among these, the chronic activation of immune cells can cause a persistent state of local CNS inflammation and damage. However, the mechanisms that sustain this persistent maladaptive immune response in SCI have not been fully clarified yet. In this study, we integrated histological analyses with proteomic, lipidomic, transcriptomic, and epitranscriptomic approaches to study the pathological and molecular alterations that develop in a mouse model of cervical spinal cord hemicontusion. We found significant pathological alterations of the lesion rim with myelin damage and axonal loss that persisted throughout the late chronic phase of SCI. This was coupled by a progressive lipid accumulation in myeloid cells, including resident microglia and infiltrating monocyte-derived macrophages. At tissue level, we found significant changes of proteins indicative of glycolytic, tricarboxylic acid cycle (TCA), and fatty acid metabolic pathways with an accumulation of triacylglycerides with C16:0 fatty acyl chains in chronic SCI. Following transcriptomic, proteomic, and epitranscriptomic studies identified an increase of cholesterol and m6A methylation in lipid-droplet-accumulating myeloid cells as a core feature of chronic SCI. By characterizing the multiple metabolic pathways altered in SCI, our work highlights a key role of lipid metabolism in the chronic response of the immune and central nervous system to damage.

10.
J Steroid Biochem Mol Biol ; 243: 106577, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971336

RESUMO

An UPLC-APCI-MS/MS method was developed for the simultaneous determination of cholesterol, 7-dehydrocholesterol (7DHC) and eight oxysterols including 27-hydroxycholesterol (27OHC), 7α-hydroxycholesterol (7αOHC), 7ß-hydroxycholesterol (7ßOHC), 24S-hydroxycholesterol (24SOHC), 25-hydroxycholesterol (25OHC), 7α,24S-dihydroxycholesterol (7α,24SdiOHC), 7α,25-dihydroxycholesterol (7α,25diOHC), and 7α,27-dihydroxycholesterol (7α,27diOHC). It has been used for quantitative analysis of cholesterol, 7DHC and eight oxysterols in hepatocellular carcinoma (HCC) cells, plasma and tumor tissue samples. And the above compounds were extracted from the biological matrix (plasma and tissue) using liquid-liquid extraction with hexane/isopropanol after saponification to cleave the steroids from their esterified forms without further derivatization. Then cholesterol, 7DHC and oxysterols were separated on a reversed phase column (Agilent Zorbax Eclipse plus, C18) within 8 min using a gradient elution with 0.1 % formic acid in H2O and methanol and detected by an APCI triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) of the cholesterol, 7DHC and oxysterols ranged from 3.9 ng/mL to 31.25 ng/mL, and the recoveries ranged from 83.0 % to 113.9 %. Cholesterol, 7DHC and several oxysterols including 27OHC, 7αOHC and 7ßOHC were successfully quantified in HCC cells, plasma, tissues and urine of HCC mice. Results showed that 27OHC was at high levels in three kind of HCC cells and tumor tissues as well as plasma samples from both HepG2 and Huh7 bearing mice model,and the high levels of 27OHC in tumors were associated with HCC development. Moreover, the levels of cholesterol in HCC cells and tumor issues varied in different HCC cells and mice model. Oxysterols profiling in biological samples might provide complementary information in cancer diagnosis.

11.
Pharmacol Res ; 206: 107294, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992851

RESUMO

Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor ß (GRß) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRß ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRß signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRß signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.


Assuntos
Ácido Aspártico , Tetracloreto de Carbono , Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Aspártico/metabolismo , Camundongos , Corticosterona , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Colesterol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Camundongos Knockout
12.
J Ethnopharmacol ; 334: 118586, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032664

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acquired resistance to osimertinib limits its clinical efficacy in non-small cell lung cancer (NSCLC) with EGFR mutations. The widespread recognition of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (Chinese yew) as a natural anti-cancer medication is well-established. However, the specific contribution of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu in addressing resistance to osimertinib is still uncertain. AIM OF THE STUDY: Based on the biological behaviors and lipid metabolism, we investigated whether aqueous extract of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (AETC) could enhance the antitumor effect of osimertinib in NSCLC with an investigation on the precise mechanisms. MATERIALS AND METHODS: The effect of AETC on enhancing osimertinib sensitivity was assessed via cell viability measurements, levels of reactive oxygen species (ROS), apoptosis, and lipid levels. Western blotting was used to verify the mechanisms of AETC responsible for overcoming the resistance to osimertinib via ERK1/2 overexpression and knockdown models. In vivo validation was conducted using subcutaneous xenografts from osimertinib-resistant cells in nude mice. RESULTS: Osimertinib-resistant cells exhibited altered cholesterol biosynthesis, which was induced by ERK1/2 activation. The combination of AETC and osimertinib can synergistically decrease the levels of ROS in cells, enhance apoptosis, and inhibit the growth of osimertinib-resistant cells. Mechanistic experiments demonstrated that AETC can downregulate the key regulators of cholesterol biosynthesis by regulating ERK1/2, inhibiting the endogenous synthesis rate of cholesterol, and suppressing the level of lipids in osimertinib-resistant cells and xenograft tumors when combined with osimertinib, ultimately reversing resistance to osimertinib. CONCLUSIONS: The resistance to osimertinib is significantly influenced by cholesterol biosynthesis, highlighting its pivotal role in this context. AETC can enhance osimertinib sensitivity via ERK/SREBP-2/HMGCR-mediated cholesterol biosynthesis. These results provide a promising therapeutic target and potential treatment option for resistance to osimertinib.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Colesterol , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Taxus , Animais , Feminino , Humanos , Camundongos , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Colesterol/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Extratos Vegetais/farmacologia , Pirimidinas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Cell Int ; 24(1): 262, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048994

RESUMO

BACKGROUND: This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS: LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS: LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS: Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.

14.
Sci Rep ; 14(1): 17422, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075279

RESUMO

Modulators of cystic fibrosis transmembrane conductance regulator (CFTR) improved cystic fibrosis (CF) patients' outcome. The elexacaftor/tezacaftor/ivacaftor (ETI) combination was safe and effective improving lung function in patients with different CFTR genotypes, including at least one F508del mutation. However, cases with liver damage were reported. We describe 105 CF patients heterozygous for F508del in trans with another CFTR mutation, treated for 1 year with ETI. We analyzed liver biochemical parameters and cholesterol metabolism, including lathosterol and phytosterols, surrogate markers of cholesterol de-novo synthesis and absorption, respectively. The treatment significantly improved sweat chloride, body mass index and forced expiratory volume in 1 s, whereas it caused a significant increase of total and conjugated bilirubin, ALT and GGT, even if no patients developed CF liver disease. Such alterations were less relevant than those previously observed in ETI-treated F508del homozygous patients. Furthermore, ETI treatment significantly increased serum cholesterol by enhancing its absorption (correlation between serum cholesterol and phytosterols). Whereas, we observed a normalization of de-novo biosynthesis (lathosterol reduction) that was not observed in homozygous patients. These data suggest that the second mutation in trans with the F508del contributes to reduce the liver cholesterol accumulation and thus, the triggering of liver inflammation. However, no differences in the alteration of biochemical indexes were observed between CF patients with and without liver steatosis, and between patients with different mutations in trans with the F508del. Such data suggest to further investigate the effects of ETI therapy on liver function indexes and new predictive biomarkers.


Assuntos
Aminofenóis , Benzodioxóis , Colesterol , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Genótipo , Indóis , Fígado , Quinolonas , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Masculino , Colesterol/metabolismo , Colesterol/sangue , Benzodioxóis/uso terapêutico , Aminofenóis/uso terapêutico , Adulto , Indóis/uso terapêutico , Indóis/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Adolescente , Quinolonas/uso terapêutico , Quinolonas/efeitos adversos , Adulto Jovem , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Mutação , Criança , Combinação de Medicamentos , Piridinas/uso terapêutico , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Pirrolidinas/uso terapêutico , Pirrolidinas/farmacologia , Pirrolidinas/administração & dosagem
15.
Nutrients ; 16(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999750

RESUMO

(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.


Assuntos
Colesterol , Fezes , Fermentação , Microbioma Gastrointestinal , Oligossacarídeos , Pectinas , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Pectinas/farmacologia , Pectinas/metabolismo , Colesterol/metabolismo , Oligossacarídeos/farmacologia , Fezes/microbiologia , Humanos , Prebióticos , Masculino , Metabolômica , Ácidos Graxos Voláteis/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/efeitos dos fármacos , Feminino , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Citrus
16.
Ecotoxicol Environ Saf ; 280: 116589, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878334

RESUMO

Both epidemiological and experimental studies increasingly show that exposure to ambient fine particulate matter (PM2.5) is related to the occurrence and development of chronic diseases, such as metabolic diseases. However, whether PM2.5 has "exposure memory" and how these memories affect chronic disease development like hepatic metabolic homeostasis are unknown. Therefore, we aimed to explore the effects of exposure transition on liver cholesterol and bile acids (BAs) metabolism in mice. In this study, C57BL/6 mice were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure facility for an initial period of 10 weeks, followed by another 8 weeks of exposure switch (PM2.5 to FA and FA to PM2.5) comparing to non-switch groups (FA to FA and PM2.5 to PM2.5), which were finally divided into four groups (FF of FA to FA, PP of PM2.5 to PM2.5, PF of PM2.5 to FA, and FP of FA to PM2.5). Our results showed no significant difference in food intake, body composition, glucose homeostasis, and lipid metabolism between FA and PM2.5 groups after the initial exposure before the exposure switch. At the end of the exposure switch, the mice switched from FA to PM2.5 exposure exhibited a high sensitivity to late-onset PM2.5 exposure, as indicated by significantly elevated hepatic cholesterol levels and disturbed BAs metabolism. However, the mice switched from PM2.5 to FA exposure retained a certain memorial effects of previous PM2.5 exposure in hepatic cholesterol levels, cholesterol metabolism, and BAs metabolism. Furthermore, 18-week PM2.5 exposure significantly increased hepatic free BAs levels, which were completely reversed by the FA exposure switch. Finally, the changes in small heterodimeric partner (SHP) and nuclear receptor subfamily 5 group A member 2 (LRH1) in response to exposure switch mechanistically explained the above alterations. Therefore, mice switching from PM2.5 exposure to FA showed only a weak memory of prior PM2.5 exposure. In contrast, the early FA caused mice to be more susceptible to subsequent PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Ácidos e Sais Biliares , Colesterol , Fígado , Camundongos Endogâmicos C57BL , Material Particulado , Animais , Material Particulado/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Colesterol/metabolismo , Camundongos , Ácidos e Sais Biliares/metabolismo , Poluentes Atmosféricos/toxicidade , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Tamanho da Partícula
17.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920688

RESUMO

Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.


Assuntos
Regulação para Baixo , Mutação , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Camundongos , Humanos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
18.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929161

RESUMO

Starch is a common source of carbohydrates in aqua feed. High-starch diet can cause hepatic injury and lipid accumulation in fish. Mangiferin (MGF) can regulate lipid metabolism and protect the liver, but there is limited research on its effects in fish. In the present study, we investigated whether MGF could ameliorate high-starch-induced hepatic damage and lipid accumulation in channel catfish. The channel catfish (Ictalurus punctatus) were fed one of four experimental diets for eight weeks: a control diet (NCD), a high-starch diet (HCD), an HCD supplemented with 100 mg/kg MGF (100 MGF), and an HCD supplemented with 500 mg/kg MGF (500 MGF). The results demonstrated that the weight gain rate (WGR) (p = 0.031), specific growth rate (SGR) (p = 0.039), and feed conversion efficiency (FCE) (p = 0.040) of the 500 MGF group were significantly higher than those of the NCD group. MGF supplementation alleviated liver damage and improved antioxidant capacity (T-AOC) compared to those of the HCD group (p = 0.000). In addition, dietary MGF significantly reduced plasma glucose (GLU) (p = 0.000), triglyceride (TG) (p= 0.001), and low-density lipoprotein cholesterol (LDL) (p = 0.000) levels. It is noteworthy that MGF significantly reduced the plasma total cholesterol (TC) levels (p = 0.000) and liver TC levels (p = 0.005) of channel catfish. Dietary MGF improves cholesterol homeostasis by decreasing the expression of genes that are involved in cholesterol synthesis and transport (hmgcr, sqle, srebf2, sp1, and ldlr) and increasing the expression of genes that are involved in cholesterol catabolism (cyp7a1). Among them, the largest fold decrease in squalene epoxidase (sqle) expression levels was observed in the 100 MGF or 500 MGF groups compared with the HCD group, with a significant decrease of 3.64-fold or 2.20-fold (p = 0.008). And the 100 MGF or 500 MGF group had significantly decreased (by 1.67-fold or 1.94-fold) Sqle protein levels compared to those of the HCD group (p = 0.000). In primary channel catfish hepatocytes, MGF significantly down-regulated the expression of sqle (p = 0.030) and reduced cholesterol levels (p = 0.000). In NCTC 1469 cells, MGF significantly down-regulated the expression of sqle (p = 0.000) and reduced cholesterol levels (p = 0.024). In conclusion, MGF effectively inhibits sqle expression and reduces cholesterol accumulation. The current study shows how MGF supplementation regulates the metabolism and accumulation of cholesterol in channel catfish, providing a theoretical basis for the use of MGF as a dietary supplement in aquaculture.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38842175

RESUMO

Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.

20.
Asian J Surg ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879366

RESUMO

Gallstones (GSs) disease is a common disease worldwide. The mechanisms of their formation are diverse and complex and are related to cholesterol metabolism, gallbladder motility, biliary tract infection, the immune response, and ion metabolism. In recent years, with the application of inductively coupled plasma‒mass spectrometry and other methods, studies have suggested a correlation between the metabolism of metal ions and GSs formation. A literature search on gallstones and metal ions was instituted on PubMed and EMBASE. The specific topics of interest were etiology, formation mechanism, component Analysis and metabolism. References of papers were subsequently searched to obtain older literature. After reading and summarizing a large amount of literature, we found that calcium, iron, and copper can potentially promote the release of inflammatory factors and increase the level of reactive oxygen species, which is positively correlated with GSs formation. While magnesium and zinc, with their antioxidant effects, are negatively correlated with GSs formation. Metal ions are not only a component of GSs but are also important biological signals. Metal ion metabolism affects the formation of GSs and understanding its mechanism of action is of clinical significance for the prevention, diagnosis and treatment of GSs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA