Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Cell Neurosci ; 16: 821885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250487

RESUMO

Mild TBI (mTBI), which affects 75% of TBI survivors or more than 50 million people worldwide each year, can lead to consequences including sleep disturbances, cognitive impairment, mood swings, and post-traumatic epilepsy in a subset of patients. To interrupt the progression of these comorbidities, identifying early pathological events is key. Recent studies have shown that microbleeds, caused by mechanical impact, persist for months after mTBI and are correlated to worse mTBI outcomes. However, the impact of mTBI-induced blood-brain barrier damage on neurons is yet to be revealed. We used a well-characterized mouse model of mTBI that presents with frequent and widespread but size-restricted damage to the blood-brain barrier to assess how neurons respond to exposure of blood-borne factors in this pathological context. We used immunohistochemistry and histology to assess the expression of neuronal proteins in excitatory and inhibitory neurons after mTBI. We observed that the expression of NeuN, Parvalbumin, and CamKII was lost within minutes in areas with blood-brain barrier disruption. Yet, the neurons remained alive and could be detected using a fluorescent Nissl staining even 6 months later. A similar phenotype was observed after exposure of neurons to blood-borne factors due to endothelial cell ablation in the absence of a mechanical impact, suggesting that entrance of blood-borne factors into the brain is sufficient to induce the neuronal atypical response. Changes in postsynaptic spines were observed indicative of functional changes. Thus, this study demonstrates That exposure of neurons to blood-borne factors causes a rapid and sustained loss of neuronal proteins and changes in spine morphology in the absence of neurodegeneration, a finding that is likely relevant to many neuropathologies.

2.
NeuroRehabilitation ; 49(2): 221-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34397431

RESUMO

BACKGROUND: Disrupted memory circuitry may contribute to post-traumatic amnesia (PTA) after traumatic brain injury (TBI). It is unclear whether duration of PTA (doPTA) uniquely impacts memory functioning in the chronic post-injury stage. OBJECTIVE: To examine the relationship between doPTA and memory functioning, independent of other cognitive abilities, in chronic moderate-to-severe TBI. METHODS: Participants were 82 individuals (median chronicity = 10.5 years) with available doPTA estimates and neuropsychological data. Composite memory, processing speed (PS), and executive functioning (EF) performance scores, as well as data on subjective memory (SM) beliefs, were extracted. DoPTA-memory associations were evaluated via linear modeling of doPTA with memory performance and clinical memory status (impaired/unimpaired), controlling for PS, EF, and demographic covariates. Interrelationships between doPTA, objective memory functioning, and SM were assessed. RESULTS: DoPTA was significantly related to memory performance, even after covariate adjustment. Impairment in memory, but not PS or EF, was associated with a history of longer doPTA. SM was associated with memory performance, but unrelated to doPTA. CONCLUSIONS: Findings suggest a specific association between doPTA-an acute injury phenomenon-and chronic memory deficits after TBI. Prospective studies are needed to understand how underlying mechanisms of PTA shape distinct outcome trajectories, particularly functional abilities related to memory processing.


Assuntos
Lesões Encefálicas Traumáticas , Amnésia/etiologia , Lesões Encefálicas Traumáticas/complicações , Função Executiva , Humanos , Memória , Testes Neuropsicológicos
3.
Front Endocrinol (Lausanne) ; 11: 556380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071972

RESUMO

Glucose is an essential cellular fuel for maintaining normal brain functions. Traumatic brain injury (TBI) decreases brain glucose utilization in both human and experimental animals during the acute or subacute phase of TBI. It remains unclear as to how the damages affect brain glucose utilization and its association with persistent neurobehavioral impairments in the chronic phase of mild TBI (mTBI). Accordingly, we compared expression of selected genes important to brain glucose utilization in different brain regions of mice during the chronic phase in mTBI vs. sham operated mice. These genes included hexokinase-1 (HK1), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate dehydrogenase (PDH), capillary glucose transporter (Glut-1), neuron glucose transporter (Glut-3), astrocyte lactate transpor1 (MCT-1), neuron lactate transporter (MCT-2), lactate receptor (GPR81), and Hexokinase isoform-2 (HK2). Young adult male C57BL/6J mice were brain injured with repetitive closed-head concussions. Morris water maze (MWM), elevated plus maze (EPM), and neurological severity score test (NSS) were performed for evaluation of mice neurobehavioral impairments at 2, 4, and 6 months post mTBI. Two days after completion of the last behavioral test, the frontal cortex, hippocampus, brainstem, hypothalamus, and cerebellum were collected for gene expression measurements. The expression of the mRNAs encoding PK, and PDH, two critical enzymes in glucose metabolism, was decreased at all-time points only in the hippocampus, but was unchanged in the brainstem, hypothalamus, and cortex in mTBI mice. mTBI mice also exhibited the following behavioral alterations: (1) decreased spatial learning and memory 2, 4, and 6 months after the injury, (2) increased proportion of time spent on open vs. closed arms determined by EPM, and (3) accelerated reduction in motor activity observed at 4 months, two months earlier than observed in the sham group, during the EPM testing. There were no significant differences in NSS between injury and sham groups at any of the three time points. Thus, mTBI in male mice led to persistent decreased hippocampal expression of mRNAs that encode critical glucose utilization related enzymes in association with long-term impairments in selected neurobehavioral outcomes.


Assuntos
Concussão Encefálica/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Hipocampo/metabolismo , Transtornos Mentais/etiologia , Animais , Concussão Encefálica/psicologia , Doença Crônica , Modelos Animais de Doenças , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Teste do Labirinto Aquático de Morris
4.
Mol Neurobiol ; 56(4): 2908-2921, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30069831

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. Although chronic disability is common after TBI, effective treatments remain elusive and chronic TBI pathophysiology is not well understood. Early after TBI, brain metabolism is disrupted due to unregulated ion release, mitochondrial damage, and interruption of molecular trafficking. This metabolic disruption causes at least part of the TBI pathology. However, it is not clear how persistent or pervasive metabolic injury is at later stages of injury. Using untargeted 1H-NMR metabolomics, we examined ex vivo hippocampus, striatum, thalamus, frontal cortex, and brainstem tissue in a rat lateral fluid percussion model of chronic brain injury. We found altered tissue concentrations of metabolites in the hippocampus and thalamus consistent with dysregulation of energy metabolism and excitatory neurotransmission. Furthermore, differential correlation analysis provided additional evidence of metabolic dysregulation, most notably in brainstem and frontal cortex, suggesting that metabolic consequences of injury are persistent and widespread. Interestingly, the patterns of network changes were region-specific. The individual metabolic signatures after injury in different structures of the brain at rest may reflect different compensatory mechanisms engaged to meet variable metabolic demands across brain regions.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Animais , Doença Crônica , Masculino , Redes e Vias Metabólicas , Metaboloma , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 19(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322151

RESUMO

Traumatic brain injury (TBI) is associated with long-term disabilities and devastating chronic neurological complications including problems with cognition, motor function, sensory processing, as well as behavioral deficits and mental health problems such as anxiety, depression, personality change and social unsuitability. Clinical data suggest that disruption of the thalamo-cortical system including anatomical and metabolic changes in the thalamus following TBI might be responsible for some chronic neurological deficits following brain trauma. Detailed mechanisms of these pathological processes are not completely understood. The goal of this study was to evaluate changes in the thalamus following TBI focusing on cleaved-caspase-3, a specific effector of caspase pathway activation and myelin and microvascular pathologies using immuno- and histochemistry at different time points from 24 h to 3 months after controlled cortical impact (CCI) in adult Sprague-Dawley rats. Significant increases in cleaved-caspase-3 immunoreactivity in the thalamus were observed starting one month and persisting for at least three months following experimental TBI. Further, the study demonstrated an association of cleaved-caspase-3 with the demyelination of neuronal processes and tissue degeneration in the gray matter in the thalamus, as reflected in alterations of myelinated fiber integrity (luxol fast blue) and decreases in myelin basic protein (MBP) immunoreactivity. The immunofluorescent counterstaining of cleaved-caspase-3 with endothelial barrier antigen (EBA), a marker of blood-brain barrier, revealed limited direct and indirect associations of cleaved caspase-3 with blood-brain barrier damage. These results demonstrate for the first time a significant chronic upregulation of cleaved-caspase-3 in selected thalamic regions associated with cortical regions directly affected by CCI injury. Further, our study is also the first to report that significant upregulation of cleaved-caspase-3 in selected ipsilateral thalamic regions is associated with microvascular reorganization reflected in the significant increases in the number of microvessels with blood-brain barrier alterations detected by EBA staining. These findings provide new insights into potential mechanisms of TBI cell death involving chronic activation of caspase-3 associated with disrupted cortico-thalamic and thalamo-cortical connectivity. Moreover, this study offers the initial evidence that this upregulation of activated caspase-3, delayed degeneration of myelinated nerve fibers and microvascular reorganization with impaired blood-brain barrier integrity in the thalamus might represent reciprocal pathological processes affecting neuronal networks and brain function at the chronic stages of TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Caspase 3/metabolismo , Microvasos/metabolismo , Bainha de Mielina/patologia , Tálamo/metabolismo , Animais , Antígenos de Superfície/metabolismo , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Microvasos/patologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
6.
J Neurotrauma ; 35(1): 157-173, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637381

RESUMO

Traumatic brain injury (TBI) may be a significant risk factor for development of neurodegenerative disorders such as chronic traumatic encephalopathy (CTE), post-traumatic epilepsy (PTE), and Alzheimer's (AD) and Parkinson's (PD) diseases. Chronic TBI is associated with several pathological features that are also characteristic of neurodegenerative diseases, including tau pathologies, caspase-3-mediated apoptosis, neuroinflammation, and microvascular alterations. The goal of this study was to evaluate changes following TBI in cleaved-caspase-3 and caspase-3-cleaved tau truncated at Asp421, and their relationships to cellular markers potentially associated with inflammation and blood-brain (BBB) barrier damage. We studied astrocytes (glial fibrillary acidic protein [GFAP]), microglia (ionized calcium-binding adapter molecule 1 [Iba1]), BBB (endothelial barrier antigen [EBA]), and activated microglia/macrophages (cluster of differentiation 68 [CD68]). We employed immunohistochemistry at different time points from 24 h to 3 months after controlled cortical impact (CCI) injury in rats, with particular interest in white matter. The study demonstrated that CCI caused chronic upregulation of cleaved-caspase-3 in the white matter of the corpus callosum. Increases in cleaved-caspase-3 in the corpus callosum were accompanied by accumulation of caspase-3-cleaved tau, with increasing perivascular aggregation 3 months after CCI. Immunofluorescence experiments further showed cellular co-localization of cleaved-caspase-3 with GFAP and CD68 and its adjacent localization with EBA, suggesting involvement of apoptosis and neuroinflammation in mechanisms of delayed BBB and microvascular damage that could contribute to white matter changes. This study also provides the first evidence that evolving upregulation of cleaved-caspase-3 is associated with accumulation of caspase-3-cleaved tau following experimental TBI, thus providing new insights into potential common mechanisms mediated by caspase-3 and underlying chronic TBI pathologies and neurodegenerative diseases.


Assuntos
Apoptose/fisiologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Caspase 3/metabolismo , Corpo Caloso/patologia , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Corpo Caloso/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
7.
Concussion ; 2(1): CNC30, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30202571

RESUMO

Given the demand for developing objective methods for characterizing traumatic brain injury (TBI), research dedicated to evaluating putative biomarkers has burgeoned over the past decade. Since it is critical to elucidate the underlying pathological processes that underlie the higher diverse outcomes that follow neurotrauma, considerable efforts have been aimed at identifying biomarkers of both the acute- and chronic-phase TBI. Such information is not only critical for helping to elucidate the pathological changes that lead to poor long-term outcomes following TBI but it may also assist in the identification of possible prevention and interventions for individuals who sustain head trauma. In the current review, we discuss the potential role of vascular dysfunction and chronic inflammation in both acute- and chronic-phase TBI, and we also highlight existing studies that have investigated inflammation biomarkers associated with poorer injury outcome.

8.
Front Hum Neurosci ; 9: 615, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26778994
9.
J Neurotrauma ; 31(13): 1180-93, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24564198

RESUMO

Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased understanding of mechanisms underlying delayed microvascular damage following TBI could provide novel insights into chronic pathological responses to TBI and potential common mechanisms underlying TBI and neurodegenerative diseases.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Circulação Cerebrovascular , Progressão da Doença , Microcirculação , Substância Branca/patologia , Animais , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Circulação Cerebrovascular/fisiologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microcirculação/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Substância Branca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA