Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Front Plant Sci ; 15: 1400213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040505

RESUMO

Cinnamyl alcohol dehydrogenase (CAD) plays a crucial role in lignin biosynthesis, and the gene family encoding various CAD isozymes has been cloned and characterized in numerous plant species. However, limited information regarding the CAD gene family in tobacco is currently available. In this study, we identified 10 CAD genes in Nicotiana tabacum, four in N. tomentosiformis, and six in N. sylvestris. The nucleotide and amino acid sequences of these tobacco CADs demonstrate high levels of similarity, whereas the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. Both NtCAD1 and NtCAD2 had conservative substrate binding sites, similar to those possessed by bona fide CADs, and evidence from phylogenetic analysis as well as expression profiling supported their role as bona fide CADs involved in lignin biosynthesis. NtCAD1 has two paralogous genes, NtCAD1-1 and NtCAD1-2. Enzyme activity analysis revealed that NtCAD1-1 and NtCAD1-2 had a high affinity to coniferyl aldehyde, p-coumaryl aldehyde, and sinapyl aldehyde, whereas NtCAD2 preferred coniferyl aldehyde and p-coumaryl aldehyde as substrates. The kinetic parameter assay revealed that NtCAD1-2 functions as the most efficient enzyme. Downregulation of both NtCAD1-1 and NtCAD1-2 resulted in reddish-brown stems without significant changes in lignin content. Furthermore, NtCAD1-1, NtCAD1-2, and NtCAD2 showed distinct expression patterns in response to biotic and abiotic stresses, as well as different phytohormones. Our findings suggest that NtCAD1-1 and NtCAD1-2 are involved in lignin biosynthesis, with NtCAD1-2 also participating in both biological and abiotic stresses, whereas NtCAD2 plays a distinct role mainly in responding to biological and abiotic stresses in tobacco.

2.
J Ethnopharmacol ; 334: 118542, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992404

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dried roots of Peucedanum decursivum, a traditional Chinese medicine (TCM), has historically respiratory diseases such as cough, thick phlegm, headache, fever, and gynecological diseases, rheumatoid arthritis, and nasopharyngeal carcinoma. AIM OF THE STUDY: Made an endeavor to evaluate the research trajectory of P. decursivum, comprehensively discern its developmental status, and offer a guideline for future investigations. MATERIALS AND METHODS: A meticulous search of literatures and books from 1955 to 2024 via databases like PubMed, Web of Science and CNKI was conducted, including topics and keywords of " P. decursivum" "Angelica decursivum" and "Zihua Qianhu". RESULTS: P. decursivum and its prescriptions have traditionally been used for treating phlegm-heat cough, wind-heat cough, gastrointestinal diseases, pain relief and so on. It contains 234 identified compounds, encompassing coumarins, terpenes, volatile oils, phenolic acids, fatty acids and derivatives. It exhibits diverse pharmacological activities, including anti-asthmatic, anti-inflammatory, antioxidant effects, anti-hypertensive, anti-diabetic, anti-Alzheimer, and anti-cancer properties, primarily attributed to coumarins. Microscopic identification, HPLC fingerprinting, and bioinformatics identification are the primary methods currently used for the quality control. CONCLUSION: P. decursivum demonstrates anti-asthmatic, anti-inflammatory, and antioxidant effects, aligning with its traditional use. However, experimental validation of its efficacy against phlegm and viruses is needed. Additionally, analgesic effects mentioned in historical texts lack modern pharmacological studies. Numerous isolated compounds exhibit highly valuable medicinal properties. Future research can delve into exploring these substances further. Rigorous of heavy metal contamination, particularly Cd and Pb, is necessary. Simultaneously, investigating its pharmacokinetics and toxicity in humans is crucial for the safety.


Assuntos
Apiaceae , Etnobotânica , Etnofarmacologia , Compostos Fitoquímicos , Controle de Qualidade , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Apiaceae/química , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos
3.
J Appl Toxicol ; 44(9): 1317-1328, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38715282

RESUMO

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.


Assuntos
Técnicas de Cocultura , Sistema Enzimático do Citocromo P-450 , Citocinas , Células Dendríticas , Propanóis , Humanos , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Propanóis/toxicidade , Propanóis/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Perfumes/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-38624155

RESUMO

The novel 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) groups immobilized on functional polymers or nanoparticles emerged as potential Pickering interfacial catalysts (PICs) for effective catalysis in biphasic systems. In this study, a snowman-shaped Janus-structured polymer with TEMPO-anchored nanohybrid particles (SM-JPP-TEMPO) was prepared and employed as a potential PIC in the Anelli-Montanari system for the selective oxidation of alcohol. The amphiphilic character of SM-JPP-TEMPO particles plays a dual role as an emulsifier and catalyst in the Pickering emulsion. As a result, it enables smaller droplets (102 µm) at the water-in-oil (W/O) interface and reduces the interfacial tension from 26.58 to 17.38 mN/m, which improves the stability of the Pickering emulsion system. This constructed Pickering emulsion microreactor offers a larger interface contact area and shortens the mass transfer distance of the substrate of cinnamyl alcohol, which significantly enhances the catalytic conversion at the Anelli-Montanari oxidation system, thus achieving remarkable conversion efficiency of (92.3%) with excellent selectivity (99%) in static (stirring-free) condition. It was found that the Janus nanohybrid catalyst (SM-JPP-TEMPO) enhanced 1.29-fold catalytic efficiency compared to the TEMPO grafted spherical polystyrene nanoparticle (PS-NPs-TEMPO) catalyst (72%). Moreover, after seven consecutive cycles, the Janus nanocatalyst (SM-JPP-TEMPO) maintained the conversion significantly. Hence, these results collectively highlight that the amphiphilic SM-JPP-TEMPO catalyst provides an efficient and eco-friendly strategy for the intensification of liquid-liquid biphasic reaction systems for potential applications in industries.

5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255766

RESUMO

Cinnamyl alcohol (CA) is an aromatic compound found in several plant-based resources and has been shown to exert anti-inflammatory and anti-microbial activities. However, the anti-adipogenic mechanism of CA has not been sufficiently studied. The present study aimed to investigate the effect and mechanism of CA on the regulation of adipogenesis. As evidenced by Oil Red O staining, Western blotting, and real-time PCR (RT-PCR) analyses, CA treatment (6.25-25 µM) for 8 d significantly inhibited lipid accumulation in a concentration-dependent manner and downregulated adipogenesis-related markers (peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), adiponectin, fatty acid synthase (FAS)) in 3-isobutyl-1-methylxanthine, dexamethasone, and insulin(MDI)-treated 3T3-L1 adipocytes. In particular, among the various differentiation stages, the early stage of adipogenesis was critical for the inhibitory effect of CA. Cell cycle analysis using flow cytometry and Western blotting showed that CA effectively inhibited MDI-induced initiation of mitotic clonal expansion (MCE) by arresting the cell cycle in the G0/G1 phase and downregulating the expression of C/EBPß, C/EBPδ, and cell cycle markers (cyclin D1, cyclin-dependent kinase 6 (CDK6), cyclin E1, CDK2, and cyclin B1). Moreover, AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC), and extracellular signal-regulated kinase 1/2 (ERK1/2), markers of upstream signaling pathways, were phosphorylated during MCE by CA. In conclusion, CA can act as an anti-adipogenic agent by inhibiting the AMPKα and ERK1/2 signaling pathways and the cell cycle and may also act as a potential therapeutic agent for obesity.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Propanóis , Camundongos , Animais , Células 3T3-L1 , Ciclo Celular , Divisão Celular
6.
J Exp Bot ; 75(5): 1633-1646, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180121

RESUMO

The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.


Assuntos
Rosa , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rosa/genética , Lignina/metabolismo , Regulação da Expressão Gênica , Botrytis/fisiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
7.
Immunol Invest ; 52(8): 1008-1022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37962037

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive intracellular lipid accumulation, oxidative stress, and inflammation. Cinnamyl alcohol (CA), one of the cinnamon extracts, has been shown to exhibit anti-oxidative and anti-inflammatory activities. We proposed that CA was beneficial to NAFLD. METHODS: Serum cytokines and components of the lipid metabolism were determined in children with NAFLD against age-matched comparisons. A NAFLD mouse model was established by high fat and high carbohydrate (HFHC) diet in male C57BL/6 mouse pups, followed by administration of CA. The effects of CA on lipid metabolism, oxidative stress, and inflammation in hepatic tissues were assessed. RESULTS: Abnormal lipid metabolism and inflammatory responses were observed in the children with NAFLD as compared with the controls. CA reduced the weight of obese mice without affecting food intake as well as alleviating liver injury caused by HFHC feeding. CA was found to mitigate dyslipidemia and reduce hepatic steatosis in HFHC-fed mice by down-regulating genes related to lipogenesis, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor-1c (SREBP-1c), and acetyl-CoA carboxylase 1 (ACC1). Additionally, CA treatment reversed HFHC-induced oxidative stress and inflammation, evidenced by the decreased liver reactive oxygen species (ROS), hepatic inflammatory cytokine levels, and F4/80-positive macrophage infiltration in HFHC diet mice. CA reduced the protein levels of pyrin domain-containing protein 3 (NLRP3), adapter protein apoptosis-associated speck-like protein (ASC), and caspase-1 in the liver tissues significantly. CONCLUSION: CA alleviates HFHC-induced NAFLD in mice, which is associated with the amelioration in lipid metabolism, oxidative stress, and inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Criança , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade Infantil/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Citocinas/metabolismo
8.
J Agric Food Chem ; 71(22): 8551-8557, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216486

RESUMO

Cell-free expression systems have emerged as a potent and promising platform for the biosynthesis of chemicals by reconstituting in vitro expressed enzymes. Here, we report cell-free biosynthesis of cinnamyl alcohol (cinOH) with enhanced productivity by using the Plackett-Burman experimental design for multifactor optimization. Initially, four enzymes were individually expressed in vitro and directly mixed to reconstitute a biosynthetic route for the synthesis of cinOH. Then, the Plackett-Burman experimental design was used to screen multiple reaction factors and found three crucial parameters (i.e., reaction temperature, reaction volume, and carboxylic acid reductase) for the cinOH production. With the optimum reaction conditions, approximately 300 µM of cinOH was synthesized after 10 h of cell-free biosynthesis. Extending the production time to 24 h also increased the production to a maximum yield of 807 µM, which is nearly 10 times higher than the initial yield without optimization. This study demonstrates that cell-free biosynthesis can be combined with other powerful optimization methodologies such as the Plackett-Burman experimental design for enhanced production of valuable chemicals.


Assuntos
Sistema Livre de Células , Propanóis
9.
Front Plant Sci ; 14: 1160571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180378

RESUMO

Shikonin derivatives are natural naphthoquinone compounds and the main bioactive components produced by several boraginaceous plants, such as Lithospermum erythrorhizon and Arnebia euchroma. Phytochemical studies utilizing both L. erythrorhizon and A. euchroma cultured cells indicate the existence of a competing route branching out from the shikonin biosynthetic pathway to shikonofuran. A previous study has shown that the branch point is the transformation from (Z)-3''-hydroxy-geranylhydroquinone to an aldehyde intermediate (E)-3''-oxo-geranylhydroquinone. However, the gene encoding the oxidoreductase that catalyzes the branch reaction remains unidentified. In this study, we discovered a candidate gene belonging to the cinnamyl alcohol dehydrogenase family, AeHGO, through coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines of A. euchroma. In biochemical assays, purified AeHGO protein reversibly oxidized (Z)-3''-hydroxy-geranylhydroquinone to produce (E)-3''-oxo-geranylhydroquinone followed by reversibly reducing (E)-3''-oxo-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone, resulting in an equilibrium mixture of the three compounds. Time course analysis and kinetic parameters showed that the reduction of (E)-3''-oxo-geranylhydroquinone was stereoselective and efficient in presence of NADPH, which determined that the overall reaction proceeded from (Z)-3''-hydroxy-geranylhydroquinone to (E)-3''-hydroxy-geranylhydroquinone. Considering that there is a competition between the accumulation of shikonin and shikonofuran derivatives in cultured plant cells, AeHGO is supposed to play an important role in the metabolic regulation of the shikonin biosynthetic pathway. Characterization of AeHGO should help expedite the development of metabolic engineering and synthetic biology toward production of shikonin derivatives.

10.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110570

RESUMO

Allylic alcohols typically produced through selective hydrogenation of α,ß-unsaturated aldehydes are important intermediates in fine chemical industry, but it is still a challenge to achieve its high selectivity transformation. Herein, we report a series of TiO2-supported CoRe bimetallic catalysts for the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) using formic acid (FA) as a hydrogen donor. The resultant catalyst with the optimized Co/Re ratio of 1:1 can achieve an exceptional COL selectivity of 89% with a CAL conversion of 99% under mild conditions of 140 °C for 4 h, and the catalyst can be reused four times without loss of activity. Meanwhile, the Co1Re1/TiO2/FA system was efficient for the selective hydrogenation of various α,ß-unsaturated aldehydes to the corresponding α,ß-unsaturated alcohols. The presence of ReOx on the Co1Re1/TiO2 catalyst surface was advantageous to the adsorption of C=O, and the ultrafine Co nanoparticles provided abundant hydrogenation active sites for the selective hydrogenation. Moreover, FA as a hydrogen donor improved the selectivity to α,ß-unsaturated alcohols.

12.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838718

RESUMO

A bimetallic Pt8Co1 supported on alkali-treated ZSM-5 zeolite (ZSM-5-AT) was prepared through the impregnation method. The structure and surface properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-sorption and X-ray photoelectron spectroscopy (XPS) as well as temperature-programmed desorption of NH3 (NH3-TPD) and temperature-programmed reduction of H2 (H2-TPR). The TEM images present that the bimetallic Pt8Co1 nanoparticles with a mean particle size of 4-6 nm were uniformly dispersed on the alkali-treated ZSM-5 zeolite. The bimetallic Pt8Co1/ZSM-5-AT catalyst exhibited an extraordinary COL selectivity of 65% at a >99% CAL conversion efficiency, which showed a much higher catalytic performance (including the activity and selectivity) than the monometallic Pt/ZSM-5-AT and Co/ZSM-5-AT catalysts in the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) using hydrogen as reducing agent. The high catalytic activity of the bimetallic catalyst was attributed to the higher electron density of Pt species and more acidic sites of the alkali-treated ZSM-5 zeolite support. The recovery test showed no obvious loss of its initial activity of the Pt8Co1/ZSM-5-AT catalyst for five times.


Assuntos
Zeolitas , Hidrogenação , Zeolitas/química , Acroleína
14.
Biochem Genet ; 61(3): 1065-1085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36422752

RESUMO

Lignin deficiency in the endocarp of walnuts causes kernel bare, leads to inconvenient processing and transportation of walnuts, and easily produces insect damage and mildew, thereby affecting the quality of walnuts. Cinnamyl alcohol dehydrogenase (CAD) is one of the key rate-limiting enzymes in lignin synthesis and plays an important role in the synthesis of lignin in the endocarp of walnut. However, knowledge about CAD gene family members and their evolutionary and functional characteristics in walnuts is limited. In this study, all 18 JrCADs were identified, and phylogenetic relationships, gene structure, protein motifs, collinearity analysis, and expression patterns of the JrCADs were also analyzed. All JrCADs could be divided into three groups based on the phylogenetic tree, gene structure, and motif analysis also support this grouping. Transcriptome data demonstrated that JrCADs have different expression patterns in walnut endocarps at different developmental stages. Combined with qRT-PCR data, we finally identified several candidate JrCADs involved in the process of endocarp sclerosis. This study showed that the JrCAD family members are highly conservative in evolutionary characteristics and they might participate in a variety of hormone responses. JrCAD17 and JrCAD18 are highly expressed in all periods of walnut endocarp harding, they are closely related to lignin accumulation.


Assuntos
Juglans , Juglans/genética , Juglans/metabolismo , Filogenia , Lignina/metabolismo , Oxirredutases do Álcool/genética
15.
BMC Plant Biol ; 22(1): 518, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344936

RESUMO

BACKGROUND: Physcomitrium patens provides an evolutionary link between green algae and vascular plants. Although the genome of P. patens includes orthologs of all the core lignin biosynthetic enzymes, the occurrence of lignin in moss is very controversial. Besides, little information is available about the lignin enzymes in moss to date. For example, cinnamyl alcohol dehydrogenase (CAD) is a crucial enzyme that catalyzes the last step of the lignin biosynthetic pathway, suggesting an ideal way to study the evolutionary process. By investigating the functions of CAD in evolution, this study will elucidate the evolutionary roles of lignin-like in the early stage of land colonization. RESULTS: CAD multigene family in P. patens is composed of four genes. The PpCADs contain a conserved glycine-rich domain to catalyze NADPH-dependent reduction to their corresponding alcohols, indicating that PpCADs have the potential to synthesize monolignols by bioinformatics analysis. Even though PpCAD1 could produce lignin in theory, no conventional monomer was detected in the cell wall or cytoplasm of PpCAD1_OE plants. However, the phenylpropanoids were promoted in PpCAD1_OE transformants to modify gametophore architecture and development, making the distribution of phyllids more scarcity and the moss colony more giant, possibly due to the enhanced expression of the AUX-IAA family. The transcripts of at least one gene encoding the enzyme in the lignin biosynthetic pathway were increased in PpCAD1_OE plants. In addition, the PpCAD1_OE gametophore inhibited the Botrytis cinerea assault mainly by enhanced phenylpropanoids in the cell wall instead of influencing transcripts of defense genes pathogenesis-related 10 (PR10) and nonexpresser of PR genes 1 (NPR1). Likewise, ectopic expression of PpCAD1 in Arabidopsis led to a significant increase in lignin content, exhibiting chunky roots, robust seedlings, advanced flowering, and efficient resistance against pathogens. CONCLUSION: PpCAD occurs in more than one copy, suggesting functional divergence in the ancestral plant. PpCAD1 catalyzes monolignol biosynthesis and has homologous functions with vascular plants. Despite no detected conventional monolignol, the increased phenylpropanoids in the PpCAD1_OE gametophore, possibly intermediate metabolites in the lignin pathway, had conserved functions during the evolution of terrestrial plants. The results inferred that the lignin enzyme of the early non-vascular plant played roles in stem elongation and resistance against pathogens of P. patens during the conquest of land.


Assuntos
Arabidopsis , Bryopsida , Lignina , Bryopsida/genética , Bryopsida/metabolismo , Arabidopsis/genética , Família Multigênica , Estresse Fisiológico , Filogenia
16.
Int J Biol Macromol ; 217: 407-416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841957

RESUMO

Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignanas , Oxirredutases do Álcool/química , Lignina/química , Filogenia
17.
Plant Physiol Biochem ; 186: 145-156, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849944

RESUMO

Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.


Assuntos
Morus , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeídos , Aminoácidos , Lignina/metabolismo , Morus/genética , Morus/metabolismo , Filogenia
18.
3 Biotech ; 12(7): 149, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747504

RESUMO

Cinnamyl alcohol dehydrogenase (CAD) is the key enzyme for lignin biosynthesis in plants. In this study, genome-wide analysis was performed to identify CAD genes in oil palm (Elaeis guineensis). Phylogenetic analysis was then conducted to select the bona fide EgCADs. The bona fide EgCAD genes and their respective 5' flanking regions were cloned and analysed. Their expression profiles were evaluated in various organs using RT-PCR. Seven EgCAD genes (EgCAD1-7) were identified and divided into four phylogenetic groups. EgCAD1 and EgCAD2 display high sequence similarities with other bona fide CADs and possess all the signature motifs of the bona fide CAD. They also display similar 3D protein structures. Gene expression analysis showed that EgCAD1 was expressed most abundantly in the root tissues, while EgCAD2 was expressed constitutively in all the tissues studied. EgCAD1 possesses only one transcription start site, while EgCAD2 has five. Interestingly, a TC microsatellite was found in the 5' flanking region of EgCAD2. The 5' flanking regions of EgCAD1 and EgCAD2 contain lignin-associated regulatory elements i.e. AC-elements, and other defence-related motifs, including W-box, GT-1 motif and CGTCA-motif. Altogether, these results imply that EgCAD1 and EgCAD2 are bona fide CAD involved in lignin biosynthesis during the normal development of oil palm and in response to stresses. Our findings shed some light on the roles of the bona fide CAD genes in oil palm and pave the way for manipulating lignin content in oil palm through a genetic approach. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03208-0.

20.
Food Chem ; 388: 133029, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468459

RESUMO

Subcritical water extraction (SWE) of four flavoring compounds from cinnamon was performed at various temperatures and for various extraction times. The extraction temperature (°C) and time (min) corresponding to the maximum content of flavoring compounds were 190 °C and 5 min for cinnamyl alcohol, 200 °C and 20 min for cinnamic acid, 130 °C and 10 min for cinnamaldehyde, and 170 °C and 20 min for coumarin, respectively. Cinnamaldehyde underwent structural conversion to benzaldehyde via hydrolysis at high temperatures, and the rate of conversion rapidly increased above 150 °C. The extraction efficiency using subcritical water was slightly higher or comparable to that using conventional extractants. SWE is a potential and highly selectivity technology for extracting flavoring compounds from cinnamon.


Assuntos
Cinnamomum zeylanicum , Óleos Voláteis , Cinnamomum zeylanicum/química , Aromatizantes , Hidrólise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA