Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Prog Neurobiol ; 240: 102660, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218140

RESUMO

Recent evidence indicates that neuronal activity within the claustrum (CLA) may be central to cellular and behavioral responses to psychedelic hallucinogens. The CLA prominently innervates many cortical targets and displays exceptionally high levels of serotonin (5-HT) binding. However, the influence of serotonin receptors, prime targets of psychedelic drug action, on CLA activity remains unexplored. We characterize the CLA expression of all known 5-HT subtypes and contrast the effects of 5-HT and the psychedelic hallucinogen, 2,5-dimethoxy-4-iodoamphetamine (DOI), on excitability of cortical-projecting CLA neurons. We find that the CLA is particularly enriched with 5-HT2C receptors, expressed predominantly on glutamatergic neurons. Electrophysiological recordings from CLA neurons that project to the anterior cingulate cortex (ACC) indicate that application of 5-HT inhibits glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). In contrast, application of DOI stimulates EPSCs. We find that the opposite effects of 5-HT and DOI on synaptic signaling can both be reversed by inhibition of the 5-HT2C, but not 5-HT2A, receptors. We identify specific 5-HT receptor subtypes as serotonergic regulators of the CLA excitability and argue against the canonical role of 5-HT2A in glutamatergic synapse response to psychedelics within the CLA-ACC circuit.


Assuntos
Anfetaminas , Claustrum , Potenciais Pós-Sinápticos Excitadores , Alucinógenos , Receptores de Serotonina , Serotonina , Animais , Serotonina/farmacologia , Serotonina/metabolismo , Alucinógenos/farmacologia , Anfetaminas/farmacologia , Claustrum/efeitos dos fármacos , Claustrum/fisiologia , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
2.
J Comp Neurol ; 532(8): e25666, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39235159

RESUMO

We have investigated the hippocampal connectivity of the marmoset presubiculum (PreS) and reported that major connections of PreS in the rat were conserved in the marmoset. Moreover, our results indicated the presence of several additional projections that were almost absent in the rat brain, but abundant in the marmoset, such as direct projections from CA1 to PreS. However, little is known about the connectivity between the frontal brain regions and PreS or hippocampal formation. Therefore, we investigated the distribution of cells of the origins and terminals of the presubicular and hippocampal projections in the marmoset frontal brain regions using the retrograde and anterograde tracer cholera toxin B subunit. In cases of tracer injections into all layers of PreS, many neurons and terminals were labeled in the claustrum-endopiriform (Cl-En) complex almost entirely along the rostrocaudal axis. Even in cases where the injection site involved the superficial (not deep) layers of PreS, labeled neurons and terminals were distributed over a wide rostrocaudal range of the Cl-En complex, but their number and density were significantly lower than the whole-layer injection cases. In cases where the injection site was confined to the hippocampal formation, labeled cells and terminals were localized at a restricted portion of the Cl-En complex. Here, we demonstrate for what we believe to be the first time the strong, reciprocal connections of the Cl-En complex with PreS and projections from the Cl-En complex to the hippocampal regions (CA1 and the subiculum) in the marmoset. Our findings indicate that the Cl-En complex may exert a strong influence on the cortical and subcortical outputs from PreS and, in turn, the entire memory circuitry in the marmoset brain.


Assuntos
Callithrix , Claustrum , Hipocampo , Vias Neurais , Animais , Callithrix/anatomia & histologia , Hipocampo/anatomia & histologia , Hipocampo/citologia , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Masculino , Claustrum/anatomia & histologia , Claustrum/fisiologia , Feminino , Neurônios/citologia , Toxina da Cólera/metabolismo
3.
J Sleep Res ; : e14266, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972672

RESUMO

Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.

4.
Data Brief ; 54: 110253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962191

RESUMO

The claustrum has a unique thin sheet-like structure that makes it hard to identify in typical anatomical MRI scans. Attempts have been made to identify the claustrum in anatomical images with either automatic segmentation techniques or using atlas-based approaches. However, the resulting labels fail to include the ventral claustrum portion, which consists of fragmented grey matter referred to as "puddles". The current dataset is a high-resolution label of the whole claustrum manually defined using an ultra-high resolution postmortem MRI image of one individual. Manual labelling was performed by four independent research trainees. Two trainees labelled the left claustrum and another two trainees labelled the right claustrum. For every hemisphere we created a union of the two labels and assessed the label correspondence using dice coefficients. We provide size measurements of the labels in MNI space by calculating the oriented bounding box size. These data are the first manual claustrum segmentation labels that include both the dorsal and ventral claustrum regions at such a high resolution in standard space. The label can be used to approximate the claustrum location in typical in vivo MRI scans of healthy individuals.

5.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915527

RESUMO

Stress has been shown to promote the development and persistence of binge eating behaviors. However, the neural circuit mechanisms for stress-induced binge-eating behaviors are largely unreported. The endogenous dynorphin (dyn)/kappa opioid receptor (KOR) opioid neuropeptide system has been well established to be a crucial mediator of the anhedonic component of stress. Here, we aimed to dissect the basis of dynorphinergic control of stress-induced binge-like eating behavior. We first established a mouse behavioral model for stress-induced binge-like eating behaviors. We found that mice exposed to stress increased their food intake of familiar palatable food (high fat, high sugar, HPD) compared to non-stressed mice. Following a brain-wide analysis, we isolated robust cFos-positive cells in the Claustrum (CLA), a subcortical structure with highly abundant KOR expression, following stress-induced binge-eating behavior. We report that KOR signaling in CLA is necessary for this elevated stress-induced binge eating behavior using local pharmacology and local deletion of KOR. In vivo calcium recordings using fiber photometry revealed a disinhibition circuit structure in the CLA during the initiation of HPD feeding bouts. We further established the dynamics of endogenous dynorphinergic control of this behavior using a genetically encoded dynorphin biosensor, Klight. Combined with 1-photon single-cell calcium imaging, we report significant heterogeneity with the CLA population during stress-induced binge eating and such behavior attenuates local dynorphin tone. Furthermore, we isolate the anterior Insular cortex (aIC) as the potential source of endogenous dynorphin afferents in the CLA. By characterizing neural circuits and peptidergic mechanisms within the CLA, we uncover a pathway that implicates endogenous opioid regulation stress-induced binge eating.

6.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38797521

RESUMO

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Gagueira , Humanos , Gagueira/patologia , Gagueira/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Adolescente , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
7.
Front Psychiatry ; 15: 1387507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707622

RESUMO

Background: The claustrum (CLA), a subcortical area between the insular cortex and striatum, innervates almost all cortical regions of the mammalian brain. There is growing evidence that CLA participates in many brain functions, including memory, cognition, and stress response. It is proposed that dysfunction or malfunction of the CLA might be the pathology of some brain diseases, including stress-induced depression and anxiety. However, the role of the CLA in fear memory and anxiety disorders remains largely understudied. Methods: We evaluated the influences of neurotoxic lesions of the CLA using auditory-cued fear memory and anxiety-like behaviors in rats. Results: We found that lesions of anterior CLA (aCLA) but not posterior CLA (pCLA) before fear conditioning attenuated fear retrieval, facilitated extinction, and reduced freezing levels during the extinction retention test. Post-learning lesions of aCLA but not pCLA facilitated fear extinction and attenuated freezing behavior during the extinction retention test. Lesions of aCLA or pCLA did not affect anxiety-like behaviors evaluated by the open field test and elevated plus-maze test. Conclusion: These data suggested that aCLA but not pCLA was involved in fear memory and extinction. Future studies are needed to further investigate the anatomical and functional connections of aCLA subareas that are involved in fear conditioning, which will deepen our understanding of CLA functions.

8.
Brain Struct Funct ; 229(5): 1143-1164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615290

RESUMO

The claustrum is an ancient telencephalic subcortical structure displaying extensive, reciprocal connections with much of the cortex and receiving projections from thalamus, amygdala, and hippocampus. This structure has a general role in modulating cortical excitability and is considered to be engaged in different cognitive and motor functions, such as sensory integration and perceptual binding, salience-guided attention, top-down executive functions, as well as in the control of brain states, such as sleep and its interhemispheric integration. The present study is the first to describe in detail a projection from the claustrum to the striatum in the macaque brain. Based on tracer injections in different striatal regions and in different cortical areas, we observed a rough topography of the claustral connectivity, thanks to which a claustral zone projects to both a specific striatal territory and to cortical areas involved in a network projecting to the same striatal territory. The present data add new elements of complexity of the basal ganglia information processing mode in motor and non-motor functions and provide evidence for an influence of the claustrum on both cortical functional domains and cortico-basal ganglia circuits.


Assuntos
Gânglios da Base , Córtex Cerebral , Claustrum , Vias Neurais , Animais , Claustrum/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Masculino , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia
9.
Curr Biol ; 34(9): 1987-1995.e4, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614081

RESUMO

The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.


Assuntos
Claustrum , Giro do Cíngulo , Animais , Giro do Cíngulo/fisiologia , Giro do Cíngulo/fisiopatologia , Claustrum/fisiologia , Camundongos , Masculino , Nociceptividade/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Dor/fisiopatologia
10.
Eur J Neurosci ; 59(12): 3203-3223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637993

RESUMO

Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context. SIGNIFICANCE STATEMENT: Understanding and correctly associating socioemotional information across sensory modalities, such that happy faces predict laughter and escape scenes predict screams, is essential when living in complex social groups. With the use of functional magnetic imaging in the awake macaque, we identify three subcortical structures-dorsolateral amygdala, claustrum and pulvinar-that only respond to auditory information that matches the ongoing visual socioemotional context, such as hearing positively valenced coo calls and seeing positively valenced mutual grooming monkeys. We additionally describe task-dependent activations in the pulvinar, organizing along a specific spatial sensory gradient, supporting its role as a network regulator.


Assuntos
Tonsila do Cerebelo , Percepção Auditiva , Claustrum , Imageamento por Ressonância Magnética , Pulvinar , Percepção Visual , Pulvinar/fisiologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Animais , Percepção Auditiva/fisiologia , Claustrum/fisiologia , Percepção Visual/fisiologia , Feminino , Expressão Facial , Macaca , Estimulação Luminosa/métodos , Mapeamento Encefálico , Estimulação Acústica , Vocalização Animal/fisiologia , Percepção Social
11.
J Histotechnol ; 47(3): 117-125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38564246

RESUMO

The aim of this study is to investigate whether the dorsal claustrum receives afferent input from the intralaminar thalamic nuclei - centromedian nucleus, central lateral nucleus and paracentral nucleus. The intralaminar thalamic nuclei of eight cats were electrolytically lesioned. We obtained samples from the dorsal claustrum for electron microscopic analysis from the second to the seventh post-procedural day. Two types of degenerated synaptic boutons were observed: electron-dense which formed the majority of boutons, and electron-lucent comprising the remaining samples. Between the second and seventh post-procedural day, we observed a steady increase in the number of electron-dense boutons which were diffusely distributed throughout the dorsal claustrum. Electron-dense degenerated boutons formed asymmetrical contacts with dendritic spines as well as with small and medium-sized dendrites. In contrast, electron-lucent degenerated boutons were observed in earlier post-procedural periods and formed symmetrical axodendritic contacts.


Assuntos
Claustrum , Núcleos Intralaminares do Tálamo , Terminações Pré-Sinápticas , Animais , Gatos , Terminações Pré-Sinápticas/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Claustrum/fisiologia , Masculino , Feminino
12.
Acta Histochem ; 126(3): 152156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518508

RESUMO

Neuropeptides are involved in numerous brain activities and are responsible for a wide spectrum of higher mental functions. The main purpose of this outline structural qualitative study was to identify the possible immunoreactivity of classical neuropeptides, as well as novel ones such as nesfatin-1, phoenixin (PNX), spexin (SPX), neuromedin U (NMU) and respective receptors within the rat claustrum for the first time. The study shows the novel identification of peptidergic neurotransmission in the rat claustrum which potentially implicates a contribution of this neuropeptide to numerous central neurosecretory mechanisms.

13.
Neurol Sci ; 45(7): 3411-3419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342839

RESUMO

OBJECTIVE: To summarize the clinical characteristics and prognosis of febrile infection-related epilepsy syndrome with claustrum lesions (FIRES-C). METHOD: Clinical data of FIRES-C patients were collected retrospectively. The study reviewed and analyzed their clinical manifestations, treatment strategies, and prognosis. RESULT: Twenty patients were enrolled, including 13 females and 7 males, with a median onset age of 20.5 years. All patients developed seizures after fever, with a median interval of 5 days. Brain MRI showed symmetric lesions in the claustrum in all patients. The median interval from seizure onset to abnormal MRI signals detection was 12.5 days. All patients had negative results for comprehensive tests of neurotropic viruses and antineuronal autoantibodies. Seventy percent of cases had been previously empirically diagnosed with autoimmune encephalitis or viral encephalitis before. All patients received anti-seizure medicine. Eleven patients (55%) received antiviral therapy. All patients received immunotherapy, including glucocorticoids (100%), intravenous immunoglobulin (IVIg) (65%), plasma exchange (PLEX) (10%), tocilizumab (10%), rituximab (5%), and cyclophosphamide (5%). Sixty percent of patients received long-term immunotherapy (≥ 3 months). The median follow-up was 11.5 months;60% of patients were diagnosed with refractory epilepsy. CONCLUSION: Bilateral claustrum lesion on MRI is a distinctive neuroimage feature for FIRES, which may serve as an indication for the initial clinical assessments. FIRES-C should be classified as a type of inflammatory encephalopathy characterized by a monophasic nature. Some FIRES-C patients respond to immunotherapy and antiseizure treatments but most experience refractory epilepsy as a long-term outcome.


Assuntos
Claustrum , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Adolescente , Adulto Jovem , Claustrum/diagnóstico por imagem , Imageamento por Ressonância Magnética , Criança , Síndromes Epilépticas , Encefalite/diagnóstico por imagem , Encefalite/diagnóstico , Encefalite/complicações , Pré-Escolar , Pessoa de Meia-Idade
14.
J Chem Neuroanat ; 136: 102400, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38342331

RESUMO

Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.


Assuntos
Claustrum , Neuropeptídeos , Animais , Humanos , Masculino , Nucleobindinas/metabolismo , Claustrum/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
15.
Cell Rep ; 43(2): 113748, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38324450

RESUMO

Animals are known to exhibit innate and learned forms of defensive behaviors, but it is unclear whether animals can escape through methods other than these forms. In this study, we develop the delayed escape task, in which male rats temporarily hold the information required for future escape, and we demonstrate that this task, in which the subject extrapolates from past experience without direct experience of its behavioral outcome, does not fall into either of the two forms of behavior. During the holding period, a subset of neurons in the rostral-to-striatum claustrum (rsCla), only when pooled together, sustain enhanced population activity without ongoing sensory stimuli. Transient inhibition of rsCla neurons during the initial part of the holding period produces prolonged inhibition of the enhanced activity. The transient inhibition also attenuates the delayed escape behavior. Our data suggest that the rsCla activity bridges escape-inducing stimuli to the delayed onset of escape.


Assuntos
Claustrum , Masculino , Animais , Ratos , Corpo Estriado , Aprendizagem , Neostriado , Neurônios
16.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422648

RESUMO

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Assuntos
Tronco Encefálico , Sono REM , Humanos , Sono REM/fisiologia , Tronco Encefálico/fisiologia , Hipotálamo , Neurônios GABAérgicos/fisiologia , Tonsila do Cerebelo
17.
Mol Brain ; 17(1): 10, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368400

RESUMO

The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.


Assuntos
Claustrum , Camundongos , Animais , Gânglios da Base/metabolismo , Neurônios/fisiologia , Camundongos Transgênicos , Interneurônios
18.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279295

RESUMO

The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl ("shell") while isolated degenerated neurons were distributed in the VCl ("core"). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections.


Assuntos
Claustrum , Estado Epiléptico , Ratos , Animais , Neurônios , Córtex Cerebral
19.
J Neurosci ; 44(5)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38148153

RESUMO

Adolescent cocaine exposure (ACE) induces anxiety and higher sensitivity to substances abuse during adulthood. Here, we show that the claustrum is crucial for controlling these psychiatric problems in male mice. In anxiety-like behavioral tests, the CaMKII-positive neurons in the median portion of the claustrum (MClaustrum) were triggered, and local suppression of these neurons reduced the anxiety-like behavior in ACE mice during adulthood. In contrast, the CaMKII-positive neurons in the anterior portion of the claustrum (AClaustrum) were more activated in response to subthreshold dose of cocaine induced conditioned place preference (CPP), and local suppression of these neurons blocked the acquisition of cocaine CPP in ACE mice during adulthood. Our findings for the first time identified the fine-regional role of the claustrum in regulating the anxiety and susceptibility to cocaine in ACE mice during adulthood, extending our understanding of the claustrum in substance use disorder.


Assuntos
Claustrum , Cocaína , Masculino , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Recompensa , Cocaína/farmacologia , Ansiedade
20.
Cell Rep ; 43(1): 113620, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159273

RESUMO

Neural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone. Finally, claustrum activation during NREM sleep enhances memory consolidation through the phase resetting of cortical delta waves. Therefore, claustrocortical communication is constrained to function most effectively during cognitive processes associated with synchronized cortical states, such as memory consolidation.


Assuntos
Encéfalo , Sono de Ondas Lentas , Sono REM/fisiologia , Neurônios , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA