Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dokl Biol Sci ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128962

RESUMO

Abstract-Logging in mature stands where part of the forest is harvested in one or several cuts and part is retained (clearcutting and alternate strip cutting) results in the formation of an ecotone complex (EC), which includes a forest (F) zone, a forest edge (FE) as a transition from the forest to the clear-cut under the canopy, a clear-cut edge (CE) as a transition from the forest to the clear-cut outside of the canopy, and the clear-cut proper (C). The composition and structure of ground vegetation and natural regeneration of woody species (Pinus sylvestris L., Picea abies (L.) H. Karst., Betula sp., Populus tremula L., Sorbus aucuparia L., and Juniperus communis L.) were studied in a bilberry pine forest-clear-cut ecotone complex 12-15 years after stand removal. Specific structural features of ground vegetation and undergrowth (including tree regeneration) were observed in each of the four zones of the ecotone complex formed after logging of the mature forest. A typical forest habitat (zone F) showed a minimum number of young regeneration of Pinus sylvestris, Picea abies, Betula sp., Populus tremula, and Sorbus aucuparia and the highest abundance of the lingonberry V. vitis-idaea L. and bilberry Vaccinium myrtillus L. with a maximum height and a maximum yield of bilberry plants. The amount of tree regeneration in the FE zone was much the same as in the F zone. The projective cover, maximum shoot height, and yield of bilberry and the maximum shoot height of lingonberry in the FE zone were significantly lower than in the F zone. The transitional zone on the clear-cut side (CE) and the clear-cut proper (C) strikingly differed from the forest (F and FE) zones of the ecotone complex by a greater number of deciduous and pine regeneration and a low abundance of dwarf shrubs. The clear-cut proper (C) differed from the CE zone by a higher abundance of grasses and forbs and an established tree regeneration layer composed of pine, birch, and aspen.

2.
Ecology ; 105(7): e4330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802263

RESUMO

Species recovery following anthropogenic disturbances will depend on adaptations in survivorship and fecundity. Life-history theory predicts increased environmental stress will result in (1) shifts in resource allocation from fecundity to body growth/maintenance and (2) increased provisioning among offspring at the cost of reproductive output. For remnant populations that persist after forest harvesting, selection mediated through anthropogenic disturbances may affect resilience to additional stressors such as climate change. We tested how rapid changes in environmental conditions affected maternal investment strategies in two ground beetle species, Pterostichus pensylvanicus and Pterostichus coracinus, by comparing fecundity and survivorship in populations from recently clear-cut and uncut habitats. Using parents drawn from clear-cut or uncut stands, we reared progeny in both common garden and reciprocal transplant experiments. In P. pensylvanicus, we found that neither lineage nor rearing habitat affected the number of eggs laid per female or survivorship of offspring. However, eggs laid by females from clear-cuts were more likely to hatch and offspring reached maturity more quickly, suggesting increased provisioning per offspring. In P. coracinus, females from clear-cuts laid more eggs, and their eggs hatched more rapidly and had greater hatching success, suggesting increased investment in overall reproductive output and increased offspring provisioning. In the reciprocal transplant, we observed significant habitat by lineage interactions on survival in P. coracinus, with survivorship increasing when progeny were reared in novel habitats. In both species, increased maternal investment among offspring was not associated with a reduction in overall reproductive output, as anticipated. However, maternal investment among offspring declined with increasing female size, implying trade-offs between increased metabolic demand and fecundity. Taken together, our work suggests that females from more stressful, clear-cut habitats increased investment in fecundity, compared to females from uncut habitats, and may compensate for larval mortality. These changes were driven by smaller individuals, suggesting that increased environmental stress can influence the relationship between female size and maternal investment strategy. Additionally, reciprocal increases in offspring survivorship in habitats other than the parents suggest that adjacent areas between unharvested and clear-cut habitat may be useful in maintaining biodiversity under future climate stressors.


Assuntos
Besouros , Florestas , Animais , Besouros/fisiologia , Feminino , Agricultura Florestal , Masculino
3.
Plants (Basel) ; 11(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235517

RESUMO

The impact of intensive forestry on various components of ecosystems has become the main subject of public and scientific debate in many regions in recent years. Forest ground vegetation is considered one of the most consistent and biodiversity-rich indicators of a certain stage of successional forest development. Therefore, changes in this forest component can potentially show the risks of forest damage due to clear-cutting and recovery trends. This study was carried out to identify the ground vegetation species diversity, including species composition and cover, also ground vegetation species relations with organic layer (forest floor) and upper mineral soil parameters at the different successional stages of the Pinus sylvestris L. stand development, including 1-2-year-old clear-cuts, and 6-130 years old stands. This study identified that the herb and dwarf shrub species were more light-demanding in the 2-year-old clear-cuts, as well as in the 6-year and 10-year old P. sylvestris stands compared to the middle-aged and mature forest stands. The dominant ground vegetation species, characteristic for the Pinetum vaccinio-myrtillosum forest type, were negatively dependent on the forest floor mass; they also had negative correlations with the concentrations of total P, K, Ca, and Mg in the forest floor and upper mineral soil but had positive correlations with the soil pH values and total N. The developed regression models of the percentage cover of mosses, herbs and dwarf shrubs according to the P. sylvestris stand age highlight the stabilization of the increase in the moss cover about 30 years after clear-cutting, with no clear trend for vascular species. The herbs and dwarf shrub species were highly variable during the stand rotation due to the species-specific characteristics and random factors rather than due to the influence of stand age. In this study, relatively short-term changes in ground vegetation species composition and percentage cover were determined after clear-cutting, but an important aspect is that new ground vegetation species appeared in the open areas, creating the potential for increasing species diversity. The clear-cutting system supports different species and numbers of herbs and mosses at different stages of stand development, which potentially increases the overall vegetation species diversity of the ecosystem.

4.
J Environ Manage ; 303: 113942, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810023

RESUMO

Logging residues influence the nitrogen cycling processes that play a key role in risks for nitrogen losses from the ecosystem after the clear cut. Therefore, our aim was to identify the potential ability of logging residues to gain external nitrogen via biological nitrogen fixation. We measured biological nitrogen fixation as nitrogenase activity in logging residues of three different tree species (Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and silver birch (Betula pendula Roth.). The study site was located in south-eastern Finland and was clear cut in 2014 and piles of logging residues were established. Sampling was performed in June 2016, September 2018, and August 2019 and nitrogenase activity in branches and needles or leaves was measured using the acetylene (C2H2) reduction assay. Nitrogenase activity (ethylene production) was shown in all residue types. Nitrogenase activity tended to be higher in branches than in needles or leaves and in coniferous residues than in birch. C-to-N ratios were higher in branches than in needles/leaves and in coniferous residues than in birch. Our results indicate that logging residues can acquire external nitrogen from the atmosphere via biological nitrogen fixation and can thus bring nitrogen to the forest ecosystem and substitute some part of the N losses occurring when residues are retained at the site after clear cutting.


Assuntos
Picea , Árvores , Betula , Ecossistema , Fixação de Nitrogênio , Solo
5.
Animals (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957527

RESUMO

The consequences of anthropogenic climate change are one of the major concerns of conservation biology. A cascade of negative effects is expected to affect various ecosystems, one of which is Central European coniferous forests and their unique biota. These coniferous forests are the primary habitat of many forest specialist species such as red wood ants. Climate change-induced rising of temperature allows trees to skip winter hibernation, making them more vulnerable to storms that cause wind felling, and in turn, promotes bark beetle infestations that results in unscheduled clear-cuttings. Red wood ants can also be exposed to such habitat changes. We investigated the effects of bark beetle-induced clear-cutting and the absence of coniferous trees on colonies of Formica polyctena, including a mixed-coniferous forest as a reference. Our aim was to investigate how these habitat features affect the nest characteristics and nesting habits of F. polyctena. Our results indicate that, in the absence of conifers, F. polyctena tend to use different alternatives for nest material, colony structure, and food sources. However, the vitality of F. polyctena colonies significantly decreased (smaller nest mound volumes). Our study highlights the ecological flexibility of this forest specialist and its potential to survive under extreme conditions.

6.
Sci Total Environ ; 709: 135980, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887521

RESUMO

In response to ecological problems originating from long-term pure coniferous plantations, clear-cut, species mixing, and other forest regeneration practices have been proposed to develop into mixed conifer-broadleaved stand. However, the dynamic effects of these forest regeneration approaches on soil respiration have not been well investigated. In this study, we compared soil respiration for three continuous years from two completely different forest regeneration approaches in clear-cut areas with uncut as control in pure Chinese fir plantations in subtropical China. These two approaches were, I: ground vegetation cut and removal of slash in the first year followed by the second year's ground vegetation cut but retained on the site, and II: ground vegetation cut and slash burning in first year followed by second year's soil ploughing, replanting, ground vegetation cut but retained on the site. Soil respiration changed obviously as forest practices were applied in the both regeneration sites. Mean respiration rate for the first year was lower for the treatments of Approach I and Approach II than uncut control (-15.0% and -26.8%), indicating that soil respiration decreased with ground vegetation removal or slash burning after clear-cut. In contrast to the first year, mean respiration rate was higher for the treatments of Approach I and Approach II treatments than uncut control (+12.8% and +32.2% in the second year, 16.3% and 30.8% in the third year), indicating ground vegetation cut with retaining residuals or soil ploughing significantly increased soil respiration. These drastically changes were mainly due to the rapid growth of understory vegetation and new seedlings, the difference of species composition, the availability of respired organic matter and the intensity of soil disturbance induced by different specific forest practices of two regeneration approaches over time. In addition, the different species mixing and forest management practices enhance the uncertainty linked to the analyses of soil respiration. Our results suggest that high intensity forest regeneration approach has a higher soil CO2 emission and lower production of biomass. Forest regeneration approaches could decrease the temperature sensitivity of soil respiration. Our findings provide new insights into the effects of forest practices on soil CO2 flux following clear-cut.


Assuntos
Cunninghamia , Biomassa , China , Florestas , Solo , Árvores
7.
Ecol Appl ; 29(1): e01813, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312509

RESUMO

Forest harvest in the boreal zone can increase the input of terrestrial materials such as dissolved organic carbon (DOC) and nitrate (NO3- ) into nearby aquatic ecosystems, with potential effects on phytoplankton growth through enhanced nutrient (i.e., positive) or reduced light availability (i.e., negative), which may affect ecosystem productivity and consumer resource use. Here, we conducted forest clear-cutting experiments in the catchments of four small, humic, and nitrogen-limited unproductive boreal lakes (two controls and two clear-cut, 18% and 44% of area cut) with one reference and two impact years. Our aim was to assess the effects of forest clear-cutting on pelagic biomass production and consumer resource use. We found that pelagic biomass production did not change after two years of forest clear-cutting: Pelagic primary and bacterial production (PP, BP), PP:BP ratio, chl a, and seston carbon (seston C) were unaffected by clear-cutting; neither did tree harvest affect seston stoichiometry (i.e., N:phosphorus [P], C:P) nor induce changes in zooplankton resource use, biomass, or community composition. In conclusion, our findings suggest that pelagic food webs of humic lakes (DOC > 15 mg/L) might be resilient to a moderate form of forest clear-cutting, at least two years after tree removal, before mechanical site preparation (e.g., mounding, plowing) and when leaving buffer strips along lakes and incoming streams. Thus, pelagic food web responses to forest clear-cutting might not be universal, but could depend on factors such as the time scale, share of catchment logged, and the forest practices involved, including the application of buffer strips and site preparation.


Assuntos
Cadeia Alimentar , Lagos , Animais , Ecossistema , Florestas , Zooplâncton
8.
J Environ Manage ; 213: 503-512, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29459025

RESUMO

Large-scale forest clear-cut identification is one of the major application of remote sensing techniques. ALOS-2/PALSAR-2 is the latest SAR satellite providing multi-polarized L-band SAR data. With increasing deforestation, it is important to assess the potential of SAR data for identifying clear-cuts in forest regions. In this research work, multi-temporal ALOS-2/PALSAR-2 SAR data and supplementary Landsat-8 optical data sets are acquired over Indian tropical forest, and SAR parameters are analysed over a progressively clear-cut Teak plantation. Sensitivity of the SAR parameters to progressive clear-cuts is estimated and found that the cross-polarized backscatter σHV0 and entropy parameter H are most sensitive to both partial and complete clear-cut in forest compartments. An entropy thresholding based classification is carried out to identify clear-cut regions with a good accuracy. The study highlights the utility of SAR parameters to monitor forest clear-cuts for better forest management.


Assuntos
Conservação dos Recursos Naturais , Florestas , Índia
9.
Plant Soil ; 420(1): 239-252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225378

RESUMO

AIMS: Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. METHODS: Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). RESULTS: Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha-1 yr.-1). The undisturbed forest served as atmospheric C sink (2.1 t C ha-1 yr.-1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha-1 yr.-1) was almost twice as high as six years after disturbance (-2.9 t C ha-1 yr.-1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. CONCLUSIONS: C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

10.
J Environ Manage ; 180: 366-74, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262031

RESUMO

Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future.


Assuntos
Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Alocação de Recursos/economia , Taiga , Ecologia , Finlândia , Modelos Teóricos , Árvores
11.
J Environ Manage ; 165: 243-252, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26439862

RESUMO

Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater.


Assuntos
Mudança Climática , Florestas , Água Subterrânea/química , Nitratos/análise , Áustria , Clima , Monitoramento Ambiental , Agricultura Florestal/métodos , Modelos Teóricos , Nitratos/química , Nitrogênio/análise , Nitrogênio/química , Estações do Ano , Solo
12.
FEMS Microbiol Ecol ; 90(1): 313-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056806

RESUMO

Recent studies have revealed an unexpectedly high, cryptic diversity of fungi associated with boreal forest bryophytes. Forestry practices heavily influence the boreal forest and fundamentally transform the landscape. However, little is known about how bryophyte-associated fungal communities are affected by these large-scale habitat transformations. This study assesses to what degree bryophyte-associated fungal communities are structured across the forest successional stages created by current forestry practices. Shoots of Hylocomium splendens were collected in Picea abies dominated forests of different ages, and their associated fungal communities were surveyed by pyrosequencing of ITS2 amplicons. Although community richness, diversity and evenness were relatively stable across the forest types and all were consistently dominated by ascomycete taxa, there was a marked shift in fungal community composition between young and old forests. Numerous fungal operational taxonomic units (OTUs) showed distinct affinities for different forest ages. Spatial structure was also detected among the sites, suggesting that environmental gradients resulting from the topography of the study area and dispersal limitations may also significantly affect bryophyte-associated fungal community structure. This study confirms that Hylocomium splendens hosts an immense diversity of fungi and demonstrates that this community is structured in part by forest age, and as such is highly influenced by modern forestry practices.


Assuntos
Briófitas/microbiologia , Agricultura Florestal , Florestas , Fungos/classificação , Biodiversidade , Fungos/isolamento & purificação
13.
Pest Manag Sci ; 70(6): 915-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23934848

RESUMO

BACKGROUND: Root-feeding beetles, particularly Hylastes spp., Hylobius pales Herbst and Pachylobius picivorus Germar, increase in abundance in stressed forest stands and vector Grosmannia and Leptographium spp. fungi, which contribute to southern pine decline (SPD) in the southeastern United States. This study examined changes in the relative abundance of root-feeding beetles in response to mechanical thinning and clear-cut of even-age loblolly pine (Pinus taeda L.) stands in central Alabama and Georgia every 2 weeks during a 30 month study in 2009-2012. RESULTS: The most abundant bark beetles were Hylastes salebrosus Eichhoff, H. porculus Erichson and H. tenuis Eichhoff. The relative abundance of the Hylastes spp. significantly increased after thinning treatments at all five sites. An initial decrease in Hylastes spp. occurred in response to clear-cut in some plots, but they typically recovered 2 months later and were stable for the remainder of the study. CONCLUSION: This study reports on the relative abundance responses of pathogen-vectoring root-feeding beetles to a thinning and clear-cut treatment in P. taeda stands. Thinning treatments conducted during the summer and winter may increase the relative abundance of Hylastes spp., vectors of Leptographium and Grosmannia spp., which are known to contribute to SPD by triggering plants to release defensive volatile compounds.


Assuntos
Gorgulhos/crescimento & desenvolvimento , Alabama , Animais , Ecossistema , Georgia , Pinus taeda , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA