Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Therm Biol ; 125: 103977, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39353365

RESUMO

Discrete populations of widely distributed species may inhabit areas with marked differences in climatic conditions across geographic and seasonal scales, which could result in intraspecific variation in thermal physiology reflecting genetic adaptation, phenotypic plasticity, or both. However, few studies have evaluated inter-population variation in physiological responses to heat. We evaluated within- and inter-population seasonal variation in heat tolerance, cooling efficiency and other key thermoregulatory traits in two Mediterranean populations of Great tit Parus major experiencing contrasting thermal environments: a lowland population subject to hotter summers and a higher annual thermal amplitude than a montane population. Specifically, we measured heat tolerance limits (HTL), body temperature, resting metabolic rate, evaporative water loss, and evaporative cooling efficiency (the ratio between evaporative heat loss to metabolic heat production) within and above the thermoneutral zone during winter and summer. Heat tolerance during summer was greater in lowland than in montane birds; indeed, lowland birds seasonally increased this trait to a significant level, while montane ones did to a lesser extent. Besides, lowland birds showed greater evaporative cooling efficiency during summer (possibly due in part to reductions in total endogenous heat load), while surprisingly montane ones showed the opposite trend. Thus, lowland birds displayed greater seasonal flexibility in HTL, body temperature and resting metabolic rate above thermoneutrality, thus giving some support to the climatic variability hypothesis - that flexibility in thermoregulatory traits should increase with climatic variability. Our results partially support the idea that songbirds' adaptive thermoregulation in the heat is flexible, highlighting the importance of considering intraspecific variation in thermoregulatory traits when modelling the future distribution and persistence of species under different climate change scenarios.

3.
Proc Biol Sci ; 291(2027): 20240206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043235

RESUMO

Sulfur (S) is an essential bioelement with vital roles in serving regulatory and catalytic functions and tightly coupled with N and P in plants. However, globally stoichiometric patterns of leaf S and its relationships to leaf N and P are less well studied. We compiled 31 939 records of leaf-based data for 2600 plant species across 6652 sites worldwide. All plant species were divided into different phylogenetic taxa and growth forms. Standard major axis analysis was employed to fit the bivariate element relationships. A phylogenetic linear mixed-effect model and a multiple-regression model were used to partition the variations of bioelements into phylogeny and environments, and then to estimate the importance of environmental variables. Global geometric mean leaf S, N and P concentrations were 1.44, 15.70 and 1.27 mg g-1, respectively, with significant differences among plant groups. Leaf S-N-P positively correlated with each other, ignoring plant groups. The scaling exponents of LN-LS, LP-LS and LN-LP were 0.64, 0.76 and 0.79, respectively, for all species, but differed among plant groups. Both phylogeny and environments regulated the bioelements. The variability, rather than mean temperature, controlled the bioelements. Phylogeny explained more for the concentrations of all the three bioelements than environments, of which S was the one most affected by phylogenetic taxa.


Assuntos
Nitrogênio , Fósforo , Filogenia , Folhas de Planta , Enxofre , Fósforo/metabolismo , Enxofre/metabolismo , Nitrogênio/metabolismo , Plantas , Meio Ambiente
4.
IJID Reg ; 12: 100384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022430

RESUMO

Objectives: Although several studies have investigated the effects of temperature on the incidence of tuberculosis (TB) in a single city or region, few studies have investigated the variations in this association using nationwide data. This study aimed to quantify the association between temporal variations in TB incidence and temperature across Japan. Methods: The data on the weekly number of newly confirmed TB cases and meteorological variables in 47 Japanese prefectures from 2007 to 2019 were collected. The exposure-response relationships between TB incidence and temperature were quantified using a distributed lag nonlinear model for each prefecture, and estimates from all prefectures were then pooled using a meta-regression model to derive nationwide average associations. Results: This study included 335,060 patients with TB. Compared to those with minimum risk temperature on TB incidence (10th percentile at 4.45°C), people who were exposed to the highest temperature concentrations had a 52.0% (relative risk 1.52, 95% confidence interval 1.04-2.23) higher risk for TB incidence at the 99th percentile (30.1°C). Our results also emphasized the heterogeneity of these associations in different prefectures. Conclusions: Strengthening monitoring and public health strategies aimed at controlling temperature-related TB may be more effective when tailored to region-specific meteorological conditions.

5.
Sci Rep ; 14(1): 11775, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783048

RESUMO

This study assesses the relationships between vegetation dynamics and climatic variations in Pakistan from 2000 to 2023. Employing high-resolution Landsat data for Normalized Difference Vegetation Index (NDVI) assessments, integrated with climate variables from CHIRPS and ERA5 datasets, our approach leverages Google Earth Engine (GEE) for efficient processing. It combines statistical methodologies, including linear regression, Mann-Kendall trend tests, Sen's slope estimator, partial correlation, and cross wavelet transform analyses. The findings highlight significant spatial and temporal variations in NDVI, with an annual increase averaging 0.00197 per year (p < 0.0001). This positive trend is coupled with an increase in precipitation by 0.4801 mm/year (p = 0.0016). In contrast, our analysis recorded a slight decrease in temperature (- 0.01011 °C/year, p < 0.05) and a reduction in solar radiation (- 0.27526 W/m2/year, p < 0.05). Notably, cross-wavelet transform analysis underscored significant coherence between NDVI and climatic factors, revealing periods of synchronized fluctuations and distinct lagged relationships. This analysis particularly highlighted precipitation as a primary driver of vegetation growth, illustrating its crucial impact across various Pakistani regions. Moreover, the analysis revealed distinct seasonal patterns, indicating that vegetation health is most responsive during the monsoon season, correlating strongly with peaks in seasonal precipitation. Our investigation has revealed Pakistan's complex association between vegetation health and climatic factors, which varies across different regions. Through cross-wavelet analysis, we have identified distinct coherence and phase relationships that highlight the critical influence of climatic drivers on vegetation patterns. These insights are crucial for developing regional climate adaptation strategies and informing sustainable agricultural and environmental management practices in the face of ongoing climatic changes.


Assuntos
Clima , Estações do Ano , Paquistão , Desenvolvimento Vegetal , Plantas , Mudança Climática , Temperatura , Monitoramento Ambiental/métodos
6.
Sci Total Environ ; 912: 169051, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061644

RESUMO

While previous studies have investigated haze events over Southeast Asia (SEA), local and transboundary contributions of various emission sources to haze months over the entire SEA have yet to be assessed comprehensively and systematically. We utilized the Particle Source Apportionment Technique (PSAT) to quantify the spatial local, transboundary, and sectoral contributions to PM2.5 over SEA during the haze months of 2015-2019. Results show that local emission contributions accounted for 56.1 % ~ 94.2 % of PM2.5 in Indonesia, Philippines, Vietnam, and Thailand. Transboundary contributions (23.1 % ~ 57.6 %) from Indonesia notably influenced maritime SEA. Vietnam (15.6 % ~ 39.1 %) and super-regional (17.0 % ~ 34.3 %) contributions outside the SEA exerted remarkable impacts on mainland SEA. Among different sectors, fire emissions contributed the most to PM2.5 over maritime SEA (23.0 % ~ 68.6 %) during the studied haze months, whereas residential and other emissions were the main contributors to mainland SEA (27.2 % ~ 36.7 %). Regarding the source species, primary PM2.5 accounted for the majority of PM2.5. VOC and SO2 composed most of the secondary PM2.5 due to massive VOC emissions in the region and the priority reaction of NH3 with sulfuric acid (H2SO4) to form ammonium sulfate. Besides, the intensified haze months in Oct 2015 and Sep 2019 were characterized by more intensive fire emissions in the region and the climatic variability-induced meteorological effects that provided favorable condition for transboundary air pollution (56.9 % and 44.9 %, respectively, for maritime SEA, as well as 46.0 % and 37.7 %, respectively, for mainland SEA in the two studied haze months). The haze months can be attributed to the notable drought conditions amidst global climatic phenomena such as El Niño and positive Indian Ocean Dipole (IOD) in Oct 2015 and Sep 2019, respectively.

7.
Biol Rev Camb Philos Soc ; 99(2): 409-429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37872698

RESUMO

Ectotherms that maintain thermal balance in the face of varying climates should be able to colonise a wide range of habitats. In lizards, thermoregulation usually appears as a variety of behaviours that buffer external influences over physiology. Basking species rely on solar radiation to raise body temperatures and usually show high thermoregulatory precision. By contrast, species that do not bask are often constrained by climatic conditions in their habitats, thus having lower thermoregulatory precision. While much focus has been given to the effects of mean habitat temperatures, relatively less is known about how seasonality affects the thermal biology of lizards on a macroecological scale. Considering the current climate crisis, assessing how lizards cope with temporal variations in environmental temperature is essential to understand better how these organisms will fare under climate change. Activity body temperatures (Tb ) represent the internal temperature of an animal measured in nature during its active period (i.e. realised thermal niche), and preferred body temperatures (Tpref ) are those selected by an animal in a laboratory thermal gradient that lacks thermoregulatory costs (i.e. fundamental thermal niche). Both traits form the bulk of thermal ecology research and are often studied in the context of seasonality. In this study, we used a meta-analysis to test how environmental temperature seasonality influences the seasonal variation in the Tb and Tpref of lizards that differ in thermoregulatory strategy (basking versus non-basking). Based on 333 effect sizes from 137 species, we found that Tb varied over a greater magnitude than Tpref across seasons. Variations in Tb were not influenced by environmental temperature seasonality; however, body size and thermoregulatory strategy mediated Tb responses. Specifically, larger species were subjected to greater seasonal variations in Tb , and basking species endured greater seasonal variations in Tb compared to non-basking species. On the other hand, the seasonal variation in Tpref increased with environmental temperature seasonality regardless of body size. Thermoregulatory strategy also influenced Tpref , suggesting that behaviour has an important role in mediating Tpref responses to seasonal variations in the thermal landscape. After controlling for phylogenetic effects, we showed that Tb and Tpref varied significantly across lizard families. Taken together, our results support the notion that the relationship between thermal biology responses and climatic parameters can be taxon and trait dependent. Our results also showcase the importance of considering ecological and behavioural aspects in macroecological studies. We further highlight current systematic, geographical, and knowledge gaps in thermal ecology research. Our work should benefit those who aim to understand more fully how seasonality shapes thermal biology in lizards, ultimately contributing to the goal of elucidating the evolution of temperature-sensitive traits in ectotherms.


Assuntos
Lagartos , Humanos , Animais , Lagartos/fisiologia , Filogenia , Regulação da Temperatura Corporal , Temperatura , Biologia , Temperatura Corporal
8.
J Exp Bot ; 74(16): 4765-4769, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658757

RESUMO

Water will be a major limitation to food production in the 21st century, and drought issues already prevail in many parts of the world. Finding solutions to ensure that farmers harvest profitable crops, and secure food supplies for families and feed for animals that will provide for them through to the next season are urgent necessities. The Interdrought community has been addressing this issue for almost 30 years in a series of international conferences, characterized by a multi-disciplinary approach across the domains of molecular biology, physiology, genetics, agronomy, breeding, environmental and social sciences, policy, and systems modeling. This special issue presents papers from the 7th edition of the conference, the first to be held in Africa, that paid special attention to drought in a smallholder context, adding a 'system' dimension to the crop focus from the previous Interdrought events (Varshney et al., 2018; Hammer et al., 2021).


Assuntos
Secas , Melhoramento Vegetal , Animais , Agricultura , Produtos Agrícolas/genética , Biologia Molecular
9.
J Therm Biol ; 108: 103291, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36031212

RESUMO

Thermal acclimatization, plastic shifts in thermal physiology in response to recent climatic conditions, is thought to be adaptive in highly seasonal environments where thermal variability is high but predictable. Thus, lizards from mid-latitude, desert environments should exhibit plasticity in their thermal tolerance limits, the upper (CTmax) and lower (CTmin) body temperatures they can withstand while maintaining physiological functioning, associated with changes in seasonal changes in climatic variation (i.e., when daily fluctuations in temperature are greater, lizards should have wider thermal tolerance breadths [CTmax-CTmin]). We measured the thermal tolerance limits of two Phrynosomatid lizard species, Uta stansburiana and Sceloporus tristichus, occurring in sympatry at three time points to test for temporal variation in thermal physiology in response to climatic variation. We found that lizards of both species measured during times when climatic variability was high had wider thermal tolerance breadths than lizards measured when climatic variability was lower. While CTmax was largely invariable, CTmin varied in response to minimum air temperature, driving the observed difference in thermal tolerance breadth among the sampling periods.


Assuntos
Lagartos , Aclimatação , Animais , Regulação da Temperatura Corporal , Simpatria , Temperatura
11.
Physiol Biochem Zool ; 95(5): 379-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35914287

RESUMO

AbstractInvestigations of thermally adaptive behavioral phenotypes are critical for both understanding climate as a selective force and predicting global species distributions under climate change conditions. Cooperative nest founding is a common strategy in harsh environments for many species and can enhance growth and competitive advantage, but whether this social strategy has direct effects on thermal tolerance was previously unknown. We examined the effects of alternative social strategies on thermal tolerance in a facultatively polygynous (multiqueen) desert ant, Pogonomyrmex californicus, asking whether and how queen number affects worker thermal tolerances. We established and reared lab colonies with one to four queens, then quantified all colony member heat tolerances (maximum critical temperature [CTmax]). Workers from colonies with more queens had higher and less variant CTmax. Our findings resemble weak link patterns, in which colony group thermal performance is improved by reducing frequencies of the most temperature-vulnerable individuals. Using ambient temperatures from our collection site, we show that multiqueen colonies have thermal tolerance distributions that enable increased midday foraging in hot desert environments. Our results suggest advantages to polygyny under climate change scenarios and raise the question of whether improved thermal tolerance is a factor that has enabled the success of polygyne species in other climatically extreme environments.


Assuntos
Formigas , Temperatura Alta , Termotolerância , Animais , Formigas/fisiologia , Mudança Climática
12.
Curr Zool ; 68(2): 199-210, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35355948

RESUMO

Maximum and minimum metabolic rates in birds are flexible traits and such flexibility can be advantageous in variable climates. The climatic variability hypothesis (CVH) posits that more variable climates should result in greater metabolic flexibility for geographically distinct populations. Whether the CVH applies to sympatric species occupying microclimates differing in variability is unknown. Microclimates of open habitats are likely more variable than those of sheltered habitats. If the CVH extends to microclimates, we expect birds from open habitats to show greater flexibility than those from sheltered habitats. To test this extension of the CVH, we compared seasonal variation in microclimates and metabolic rates for sympatric horned larks Eremophila alpestris, which occupy open habitats, and house sparrows Passer domesticus, which occupy sheltered habitats. We measured operative temperature (T e, an integrative measure of the thermal environment), summit metabolic rate (M sum, maximal cold-induced metabolic rate), and basal metabolic rate (BMR, minimal maintenance metabolic rate) in summer and winter. For both winter and summer, daily minimum T e was similar between open and sheltered habitats but maximum T e was higher for open habitats. Winter microclimates, however, were colder for open than for sheltered habitats after accounting for convective differences. Both species increased M sum in winter, but seasonal M sum flexibility was greater for larks (43%) than for sparrows (31%). Winter increases in BMR were 92.5% and 11% for larks and sparrows, respectively, with only the former attaining statistical significance. Moreover, species * season interactions in general linear models for whole-organism metabolic rates were significant for BMR and showed a similar, although not significant, pattern for M sum, with greater seasonal metabolic flexibility in horned larks than in house sparrows. These results suggest that extending the CVH to sympatric bird species occupying different microclimates may be valid.

13.
Sci Total Environ ; 826: 153876, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35181366

RESUMO

Variation in sediment yield may reflect a signal of disturbances in the upstream landscape, modified by sediment routing. This study, conducted in a forested drainage basin in the inland Pacific Northwest, USA, sought to generate a better insight into the interdecadal variability of sediment yield in mountain landscapes in response to environmental change during the last century. To this end, we examined: (1) sediment yield fluctuations; and (2) their association with streamflow and land use changes; as well as (3) streamflow links to climate variability modes; and (4) the influence of sediment delivery from hillslope sources to streams (lateral connectivity) and its downstream routing through the stream network (longitudinal connectivity) on land use signal at the basin's outlet. Sediment yield between 1910 and 2017, estimated based on reconstructed fluvial delta growth, displayed an order of magnitude variability, which indicates a substantial geomorphic sensitivity. The interpretation of temporal patterns and an exploratory statistical analysis pointed to land use-related sediment supply changes as the primary driver of these fluctuations, dominating system behavior before changes in environmental regulations and practices in the mid-1970s. Hydroclimatically controlled streamflow variability appeared to be more prominent in the subsequent period. Our connectivity analysis suggested that a considerable portion of coarse sediment mobilized by harvest and road construction may still reside within the channel network. In light of previous research in this landscape system, we speculate that, despite limited anthropogenic pressures in the recent decades, its characteristics and behavior continue to be conditioned by land use legacies. Overall, this study contributes to the growing understanding of profound anthropogenic transformation of the earth surface. Specifically, it demonstrates that historical resource extraction may have left a lasting imprint even in relatively remote mountain landscapes. Given the ongoing rapid environmental change, such understanding is crucial for watershed management, conservation, and restoration.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Efeitos Antropogênicos , Florestas , Sedimentos Geológicos/análise , Noroeste dos Estados Unidos
14.
Ecology ; 103(4): e3629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35018629

RESUMO

The climatic variability hypothesis predicts the evolution of species with wide thermal tolerance ranges in environments with variable temperatures, and the evolution of thermal specialists in thermally stable environments. In caves, the extent of spatial and temporal thermal variability experienced by taxa decreases with their degree of specialization to deep subterranean habitats. We use phylogenetic generalized least squares to model the relationship among thermal tolerance (upper lethal limits), subterranean specialization (estimated using ecomorphological traits), and habitat temperature in 16 beetle species of the tribe Leptodirini (Leiodidae). We found a significant, negative relationship between thermal tolerance and the degree of subterranean specialization. Conversely, habitat temperature had only a marginal effect on lethal limits. In agreement with the climatic variability hypothesis and under a climate change context, we show that the specialization process to live in deep subterranean habitats involves a reduction of upper lethal limits, but not an adjustment to habitat temperature. Thermal variability seems to exert a higher evolutionary pressure than mean habitat temperature to configure the thermal niche of subterranean species. Our results provide novel insights on thermal physiology of species with poor dispersal capabilities and on the evolutionary process of adaptation to subterranean environments. We further emphasize that the pathways determining vulnerability of subterranean species to climate change greatly depend on the degree of specialization to deep subterranean environments.


Assuntos
Besouros , Animais , Mudança Climática , Ecossistema , Filogenia , Temperatura
15.
Stoch Environ Res Risk Assess ; 36(1): 283-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33846679

RESUMO

The long-term lockdown due to COVID-19 has beneficial impact on the natural environment. India has enforced a lockdown on 24th March 2020 and was subsequently extended in various phases. The lockdown due to the sudden spurt of the COVID-19 pandemic has shown a significant decline in concentration of air pollutants across India. The present article dealt with scenarios of air quality concentration of air pollutants, and effect on climatic variability during the COVID-19 lockdown period in Kolkata Metropolitan Area, India. The result showed that the air pollutants are significantly reduced and the air quality index (AQI) was improved during the lockdown months. Aerosol concentrations decreased by - 54.94% from the period of pre-lockdown. The major air pollutants like particulate matters (PM2.5, PM10), sulphur dioxide (SO2), carbon monoxide (CO) and Ozone (O3) were observed the maximum reduction ( - 40 to - 60%) in the COVID-19 lockdown period. The AQI has been improved by 54.94% in the lockdown period. On the other hand, Sen's slope rank and the Mann-Kendal trend test showed the daily decreased of air pollutants rate is - 0.051 to - 1.586 µg /m3. The increasing trend of daily minimum, average, and maximum temperature from the month of March to May in this year (2020s) are 0.091, 0.118, and 0.106 °C which is lowest than the 2016s to 2019s trend. Therefore, this research has an enormous opportunity to explain the effects of the lockdown on air quality and climate variability, and it can also be helpful for policymakers and decision-makers to enact appropriate measures to control air pollution.

16.
Environ Evid ; 11(1): 31, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39294793

RESUMO

BACKGROUND: Climate change is affecting small-scale populations worldwide. Evidence of adverse effects has been reported for smallholders' agriculture, hunting, fishing, and gathering products from natural ecosystems (non-timber forest products). To take precautions or deal with such problems (i.e. to adapt), smallholders need to perceive climatic changes. Acknowledging this need, the literature on this topic is vast. Despite that, authors adopt alternative concepts of climate change perception, which may hinder comparisons of results across studies. Hence, the review team aim to systematically map the literature usage of the climate change perception concept. METHODS: This systematic map will follow the CEE guidelines and conform to the Reporting Standards for Systematic Evidence form. The review team will rely on five electronic databases of scientific publications-Scopus, Web of Science Core Collection, BASE-Bielefeld Academic Search Engine, Science Direct Elsevier and PubMed-with pre-tested search terms only in English. Publications will be filtered through the "articles only" and "English language" selections. Titles, abstracts, and full texts will then be screened using pre-defined eligibility criteria, including small-scale and indigenous populations inhabiting rural areas, as well as presenting explicitly or implicitly the concept of climate change perception. From articles meeting the eligibility criteria, the review team will extract and encode the data while selecting the full texts for reading. The review team will use a codebook pre-elaborated for encoding. No critical appraisal of study validity will be undertaken. Finally, a database with coded metadata of all studies in the map will be made available. The review team will present the evidence in a report map with text, figures, and tables, besides a catalogue of all identified perception definitions.

17.
Plants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203209

RESUMO

Populations of the U.S. threatened orchid, Platanthera leucophaea, are restricted to fragmented grassland and wetland habitats. We address the long-term (1998-2020) interactive effects of habitat (upland prairie vs. wetland), fire management (burned vs. unburned) and climatic variation, as well as pollination crossing effects, on population demography in 42 populations. Our analysis revealed the consistent interactive effects of habitat, dormant season burning, and climatic variation on flowering, reproduction, and survival. Burning increased flowering and population size under normal or greater than normal precipitation but may have a negative effect during drought years apparently if soil moisture stress reduces flowering and increases mortality. Trends in the number of flowering plants in populations also correspond to precipitation cycles. As with flowering and fecundity, survival is significantly affected by the interactive effects of habitat, fire, and climate. This study supports previous studies finding that P. leucophaea relies on a facultative outcrossing breeding system. Demographic modeling indicated that fire, normal precipitation, and outcrossing yielded greater population growth, and that greater fire frequency increased population persistence. It also revealed an ecologically driven demographic switch, with wetlands more dependent upon survivorship than fecundity, and uplands more dependent on fecundity than survivorship. Our results facilitate an understanding of environmental and management effects on the population demography of P. leucophaea in the prairie region of its distribution. Parallel studies are needed in the other habitats such as wetlands, especially in the eastern part of the range of the species, to provide a more complete picture.

18.
Ecol Lett ; 24(10): 2267-2281, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216183

RESUMO

Predicting plastic responses is crucial to assess plant species potential to adapt to climate change, but little is known about which factors drive the biogeographical patterns of phenotypic plasticity in plants. Theory predicts that climatic variability would select for increased phenotypic plasticity, whereas evidence indicates that stressful conditions can limit phenotypic plasticity. Using a meta-analytic, phylogeny-corrected approach to global data on plant phenotypic plasticity, we tested whether latitude, climate, climatic variability and/or stressful conditions are predictors of plastic responses at a biogeographical scale. We found support for a positive association between phenotypic plasticity and climatic variability only for plasticity in allocation. Plasticity in leaf morphology, size and physiology were positively associated with mean annual temperature. We also found evidence that phenotypic plasticity in physiology is limited by cold stress. Overall, plant plastic responses to non-climatic factors were stronger than responses to climatic factors. However, while climatic conditions were associated with plant plastic responses to climatic factors, they generally did not relate to plastic responses to other abiotic or biotic factors. Our study highlights the need to consider those factors that favour and limit phenotypic plasticity in order to improve predictive frameworks addressing plant species' potential to adapt to climate change.


Assuntos
Adaptação Fisiológica , Plantas , Mudança Climática , Filogenia , Temperatura
19.
Plant Sci ; 304: 110737, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568289

RESUMO

Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.


Assuntos
Evolução Biológica , Mudança Climática , Plantas/genética , Fenômenos Fisiológicos Vegetais/genética , Polinização
20.
Sci Total Environ ; 760: 143894, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341628

RESUMO

Elucidating the variation in grassland belowground biomass (BGB) and its response to changes in climatic variables are key issues in plant ecology research. In this study, BGB data for five ecoregions (cold steppe, temperate dry steppe, savanna, humid savanna, and humid temperate) were used to examine the effects of climatic variability and extremes on the BGB of C3- and C4-dominated grasslands. Results showed that BGB varied significantly across the ecoregions, with the highest levels in cold steppe and the lowest in savanna. The results indicated that growing-season temperature, maximum and minimum temperatures and their interactions had significantly positive effects on the single-harvest BGB of C3 plants in colder ecoregions (i.e., humid temperate and cold steppe) and of C4 plants in arid ecoregions (i.e., temperate dry steppe and savanna). The single-harvest BGB of C3 plants in arid ecoregions and C4 plants in humid savanna ecoregion declined with increasing temperature during the growing season. Growing-season precipitation exerted significant positive effects on the single-harvest BGB of C4 plants in arid ecoregions. Annual temperature variables negatively impacted the annual BGB of humid temperate ecoregion, because of the dominance of C3 plants. Increasing cumulative growing-season precipitation elevated and the mean annual temperature reduced the annual BGB of both categories of plants in arid ecoregions. Compared with normal climates, extreme dry events during the growing season enhanced single-harvest BGB in colder ecoregions. The single-harvest BGB of C4 plants in savanna tended to increase during extreme wet and decrease during moderate dry events compared to normal climates. This study suggests that the differential effects of climatic variability and extremes on BGB can be explained by differences in plant types, and ecoregions. These findings on the responses of the BGB to climatic variability and extremes constitute important scientific evidence emphasizing the need to maintain ecosystem stability across ecoregions.


Assuntos
Ecossistema , Pradaria , Biomassa , Poaceae , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA