Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.011
Filtrar
1.
Diabetologia ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138689

RESUMO

Over the past two decades there has been a substantial rise in the adoption of diabetes therapeutic technology among children, adolescents and younger adults with type 1 diabetes, and its use is now also advocated for older individuals. Older people with diabetes are more prone to experience hypoglycaemia because of numerous predisposing factors and are at higher risk of hypoglycaemic events requiring third-party assistance as well as other adverse sequelae. Hypoglycaemia may also have long-term consequences, including cognitive impairment, frailty and disability. Diabetes in older people is often characterised by marked glucose variability related to age-associated changes such as variable appetite and levels of physical activity, comorbidities and polypharmacotherapy. Preventing hypoglycaemia and mitigating glucose excursions may have considerable positive impacts on physical and cognitive function and general well-being and may even prevent or improve frailty. Technology for older people includes continuous glucose monitoring systems, insulin pumps, automated insulin delivery systems and smart insulin pens. Clinical trials and real-world studies have shown that older people with diabetes benefit from technology in terms of glucose management, reductions in hypoglycaemic events, emergency department attendance and hospital admissions, and improvement in quality of life. However, ageing may bring physical impairments and other challenges that hinder the use of technology. Healthcare professionals should identify older adults with diabetes who may benefit from therapeutic technology and then adopt an individualised approach to education and follow-up for individuals and their caregivers. Future research should explore the impact of diabetes technology on outcomes relevant to older people with diabetes.

2.
Ann Biomed Eng ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133389

RESUMO

Ablation therapy is a type of minimally invasive treatment, utilized for various organs including the brain, heart, and kidneys. The accuracy of the ablation process is critically important to avoid both insufficient and excessive ablation, which may result in compromised efficacy or complications. The thermal ablation is formulated by two theoretical models: the heat transfer (HT) and necrosis formation (NF) models. In modern medical practices, feed-forward (FF) and temperature feedback (TFB) controls are primarily used as ablation control methodologies. FF involves pre-therapy procedure planning based on previous experiences and theoretical knowledge without monitoring the intraoperative tissue response, hence, it can't compensate for discrepancies in the assumed HT or NF models. These discrepancies can arise due to individual patient's tissue characteristic differences and specific environmental conditions. Conversely, TFB control is based on the intraoperative temperature profile. It estimates the resulting heat damage based on the monitored temperature distribution and assumed NF model. Therefore, TFB can make necessary adjustments even if there is an error in the assumed HT model. TFB is thus seen as a more robust control method against modeling errors in the HT model. Still, TFB is limited as it assumes a fixed NF model, irrespective of the patient or the ablation technique used. An ideal solution to these limitations would be to actively monitor heat damage to the tissue during the operation and utilize this data to control ablation. This strategy is defined as necrosis feedback (NFB) in this study. Such real-time necrosis monitoring modalities making NFB possible are emerging, however, there is an absence of a generalized study that discusses the integration and quantifies the significance of the real-time necrosis monitor techniques for ablation therapy. Such an investigation is expected to clarify the universal principles of how these techniques would improve ablation therapy. In this study, we examine the potential of NFB in suppressing errors associated with the NF model as NFB is theoretically capable of monitoring and suppressing the errors associated with the NF models in its closed control loop. We simulate and compare the performances of TFB and NFB with artificially generated modeling errors using the finite element method (FEM). The results show that NFB provides more accurate ablation control than TFB when NF-oriented errors are applied, indicating NFB's potential to improve the ablation control accuracy and highlighting the value of the ongoing research to make real-time necrosis monitoring a clinically viable option.

3.
Sci Rep ; 14(1): 18504, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122913

RESUMO

Nonholonomic constrained wheeled mobile robot (WMR) trajectory tracking requires the enhancement of the ground adaptation capability of the WMR while ensuring its attitude tracking accuracy, a novel dual closed-loop control structure is developed to implement this motion/force coordinated control objective in this paper. Firstly, the outer-loop motion controller is presented using Laguerre functions modified model predictive control (LMPC). Optimised solution condition is introduced to reduce the number of LMPC solutions. Secondly, an inner-loop force controller based on adaptive integral sliding mode control (AISMC) is constructed to ensure the desired velocity tracking and output driving torques by combining second-order nonlinear extended state observer (ESO) with the estimation of dynamic uncertainties and external disturbances during WMR travelling process. Then, Lyapunov stability theory is utilised to guarantee the consistent final boundedness of the designed controller. Finally, the system is numerically simulated and practically verified. The results show that the double-closed-loop control strategy devised in this paper has better control performance in terms of complex trajectory tracking accuracy, system resistance to strong interference and computational timeliness, and is able to realise effective coordinated control of WMR motion/force.

4.
ChemSusChem ; : e202401595, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141831

RESUMO

Polyurethanes (PUs) are highly versatile polymers widely utilized across industries. However, chemical recycling of PU possess significant challenges due to the harsh conditions required, and the formation of complex mixtures of oligomers upon depolymerization. Addressing this inherent lack of recyclability, we developed closed-loop recyclable PU materials by integrating cleavable acetal groups. We present a sustainable and scalable synthesis method for acetal-containing polyols (APs) through aldehyde-diol polycondensation, utilizing reusable heterogeneous catalysis. Three APs with different hydrolytic stabilities depending on the structure of acetal groups were synthesized from formaldehyde, acetaldehyde, and propionaldehyde with 1,6-hexanediol (H16). These APs were employed alongside 4,4'-methylene diisocyanate (MDI) for preparation of PU materials. The resulting PUs exhibited mechanical properties comparable to or surpassing those of conventional PUs, while demonstrating excellent recyclability under acidic conditions. Notably, hydrolysis of PU materials based on acetaldehyde-derived APs yielded remarkable monomer recovery rates, with 89% for H16 and 84% for 4,4'-methylenedianiline, a precursor to MDI. Furthermore, we successfully demonstrated closed-loop recycling by synthesizing APs from recovered H16, resulting in PU materials with identical properties to the original PU. This achievement highlights the potential for establishing a closed-loop recycling system for acetal-containing PUs, contributing to the advancement of a sustainable and circular economy.

5.
J Environ Manage ; 367: 121738, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096721

RESUMO

This article introduces a green centralized supply chain in a two-stage stochastic programming model using deteriorating products. The model reduces the cost of purchasing, transporting, storing, product recovery and shortages. This cuts down on greenhouse emission related to transportation, product recovery, and recycling programs. On the basis of this, we explore the utilization of the circular economy to the damages that could occur from used products. Furthermore, revenue sharing and quantity discount contracts are examined in the business models between the members of the supply chain and the external manufacturer. Demand is assumed to be uncertain, and scenarios are created to account this. The model specifies the optimal order quantities, transportation modes and contract terms that minimize costs and environmental impacts. Numerical examples analyze the trade-offs between economic and environmental objectives under different supply chain parameters. The results provide insights for circular supply chains that reconcile economic incentives with environmental responsibility for deteriorating product.


Assuntos
Reciclagem , Reciclagem/economia , Modelos Teóricos , Meios de Transporte/economia , Meio Ambiente
6.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124067

RESUMO

Laser metal deposition (LMD) is a technology for the production of near-net-shape components. It is necessary to control the manufacturing process to obtain good geometrical accuracy and metallurgical properties. In the present study, a closed-loop control method of melt pool temperature for the deposition of small Ti6Al4V blocks in open environment was proposed. Based on the developed melt pool temperature sensor and deposition height sensor, a closed-loop control system and proportional-integral (PI) controller were developed and tested. The results show that with a PI temperature controller, the melt pool temperature tends to the desired value and remains stable. Compared to the deposition block without the controller, a flatter surface and no oxidation phenomenon are obtained with the controller.

7.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124358

RESUMO

Hysteresis is a fundamental characteristic of magnetic materials. The Jiles-Atherton (J-A) hysteresis model, which is known for its few parameters and clear physical interpretations, has been widely employed in simulating hysteresis characteristics. To better analyze and compute hysteresis behavior, this study established a state space representation based on the primitive J-A model. First, based on the five fundamental equations of the J-A model, a state space representation was established through variable substitution and simplification. Furthermore, to address the singularity problem at zero crossings, local linearization was obtained through an approximation method based on the actual physical properties. Based on these, the state space model was implemented using the S-function. To validate the effectiveness of the state space model, the hysteresis loops were obtained through COMSOL finite element software and tested on a permalloy toroidal sample. The particle swarm optimization (PSO) method was used for parameter identification of the state space model, and the identification results show excellent agreement with the simulation and test results. Finally, a closed-loop control system was constructed based on the state space model, and trajectory tracking experiments were conducted. The results verify the feasibility of the state space representation of the J-A model, which holds significant practical implications in the development of magnetically shielded rooms, the suppression of magnetic interference in cold atom clocks, and various other applications.

8.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125856

RESUMO

The closed-loop control of pathological brain activity is a challenging task. In this study, we investigated the sensitivity of continuous epileptiform short discharge generation to electrical stimulation applied at different phases between the discharges using an in vitro 4-AP-based model of epilepsy in rat hippocampal slices. As a measure of stimulation effectiveness, we introduced a sensitivity function, which we then measured in experiments and analyzed with different biophysical and abstract mathematical models, namely, (i) the two-order subsystem of our previous Epileptor-2 model, describing short discharge generation governed by synaptic resource dynamics; (ii) a similar model governed by shunting conductance dynamics (Epileptor-2B); (iii) the stochastic leaky integrate-and-fire (LIF)-like model applied for the network; (iv) the LIF model with potassium M-channels (LIF+KM), belonging to Class II of excitability; and (v) the Epileptor-2B model with after-spike depolarization. A semi-analytic method was proposed for calculating the interspike interval (ISI) distribution and the sensitivity function in LIF and LIF+KM models, which provided parametric analysis. Sensitivity was found to increase with phase for all models except the last one. The Epileptor-2B model is favored over other models for subthreshold oscillations in the presence of large noise, based on the comparison of ISI statistics and sensitivity functions with experimental data. This study also emphasizes the stochastic nature of epileptiform discharge generation and the greater effectiveness of closed-loop stimulation in later phases of ISIs.


Assuntos
Estimulação Elétrica , Epilepsia , Animais , Ratos , Epilepsia/fisiopatologia , Epilepsia/terapia , Estimulação Elétrica/métodos , Hipocampo/fisiopatologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Ratos Wistar , Rede Nervosa/fisiopatologia , Masculino
9.
bioRxiv ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39131368

RESUMO

In natural circumstances, sensory systems operate in a closed loop with motor output, whereby actions shape subsequent sensory experiences. A prime example of this is the sensorimotor processing required to align one's direction of travel, or heading, with one's goal, a behavior we refer to as steering. In steering, motor outputs work to eliminate errors between the direction of heading and the goal, modifying subsequent errors in the process. The closed-loop nature of the behavior makes it challenging to determine how deterministic and nondeterministic processes contribute to behavior. We overcome this by applying a nonparametric, linear kernel-based analysis to behavioral data of monkeys steering through a virtual environment in two experimental contexts. In a given context, the results were consistent with previous work that described the transformation as a second-order linear system. Classically, the parameters of such second-order models are associated with physical properties of the limb such as viscosity and stiffness that are commonly assumed to be approximately constant. By contrast, we found that the fit kernels differed strongly across tasks in these and other parameters, suggesting context-dependent changes in neural and biomechanical processes. We additionally fit residuals to a simple noise model and found that the form of the noise was highly conserved across both contexts and animals. Strikingly, the fitted noise also closely matched that found previously in a human steering task. Altogether, this work presents a kernel-based analysis that characterizes the context-dependence of deterministic and non-deterministic components of a closed-loop sensorimotor task.

10.
Diabetologia ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145882

RESUMO

Challenges and fears related to managing glucose levels around planned and spontaneous exercise affect outcomes and quality of life in people living with type 1 diabetes. Advances in technology, including continuous glucose monitoring, open-loop insulin pump therapy and hybrid closed-loop (HCL) systems for exercise management in type 1 diabetes, address some of these challenges. In this review, three research or clinical experts, each living with type 1 diabetes, leverage published literature and clinical and personal experiences to translate research findings into simplified, patient-centred strategies. With an understanding of limitations in insulin pharmacokinetics, variable intra-individual responses to aerobic and anaerobic exercise, and the features of the technologies, six steps are proposed to guide clinicians in efficiently communicating simplified actions more effectively to individuals with type 1 diabetes. Fundamentally, the six steps centre on two aspects. First, regardless of insulin therapy type, and especially needed for spontaneous exercise, we provide an estimate of glucose disposal into active muscle meant to be consumed as extra carbohydrates for exercise ('ExCarbs'; a common example is 0.5 g/kg body mass per hour for adults and 1.0 g/kg body mass per hour for youth). Second, for planned exercise using open-loop pump therapy or HCL systems, we additionally recommend pre-emptive basal insulin reduction or using HCL exercise modes initiated 90 min (1-2 h) before the start of exercise until the end of exercise. Modifications for aerobic- and anaerobic-type exercise are discussed. The burden of pre-emptive basal insulin reductions and consumption of ExCarbs are the limitations of HCL systems, which may be overcome by future innovations but are unquestionably required for currently available systems.

11.
J Neuroeng Rehabil ; 21(1): 142, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135110

RESUMO

BACKGROUND: Closing the control loop between users and their prostheses by providing artificial sensory feedback is a fundamental step toward the full restoration of lost sensory-motor functions. METHODS: We propose a novel approach to provide artificial proprioceptive feedback about two degrees of freedom using a single array of 8 vibration motors (compact solution). The performance afforded by the novel method during an online closed-loop control task was compared to that achieved using the conventional approach, in which the same information was conveyed using two arrays of 8 and 4 vibromotors (one array per degree of freedom), respectively. The new method employed Gaussian interpolation to modulate the intensity profile across a single array of vibration motors (compact feedback) to convey wrist rotation and hand aperture by adjusting the mean and standard deviation of the Gaussian, respectively. Ten able-bodied participants and four transradial amputees performed a target achievement control test by utilizing pattern recognition with compact and conventional vibrotactile feedback to control the Hannes prosthetic hand (test conditions). A second group of ten able-bodied participants performed the same experiment in control conditions with visual and auditory feedback as well as no-feedback. RESULTS: Conventional and compact approaches resulted in similar positioning accuracy, time and path efficiency, and total trial time. The comparison with control condition revealed that vibrational feedback was intuitive and useful, but also underlined the power of incidental feedback sources. Notably, amputee participants achieved similar performance to that of able-bodied participants. CONCLUSIONS: The study therefore shows that the novel feedback strategy conveys useful information about prosthesis movements while reducing the number of motors without compromising performance. This is an important step toward the full integration of such an interface into a prosthesis socket for clinical use.


Assuntos
Membros Artificiais , Retroalimentação Sensorial , Mãos , Propriocepção , Vibração , Punho , Humanos , Retroalimentação Sensorial/fisiologia , Propriocepção/fisiologia , Adulto , Masculino , Punho/fisiologia , Feminino , Mãos/fisiologia , Amputados/reabilitação , Rotação , Adulto Jovem , Pessoa de Meia-Idade , Tato/fisiologia
12.
J Pain ; : 104646, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094810

RESUMO

Spinal cord stimulation (SCS) is a well-established treatment for chronic neuropathic pain. However, over- or under-delivery of the SCS may occur because the spacing between the stimulating electrodes and the spinal cord is not fixed; spacing changes with motion and postural shifts may result in variable delivery of the SCS dose, and in turn a sub-optimal therapy experience for the patient. The evoked compound action potential (ECAP)-a measure of neural activation - may be used as a control signal to adapt SCS parameters in real-time to compensate for this variability. In this prospective, multicenter, randomized, single-blind, crossover trial, reduction in overstimulation intensity was used as a perceptual measure to evaluate a novel ECAP-controlled, closed-loop (CL) SCS algorithm relative to traditional open-loop (OL) SCS. The primary outcome used a Likert scale to assess sensation during activities of daily living with CL versus OL SCS. Of the 42 subjects in the Intent-to-Treat Analysis set, 97.6% had a reduction in sensation with CL versus OL SCS. The primary objective was met as the lower confidence limit (87.4%) exceeded the performance goal of 50% (p < 0.001). A total of 88.1% (37/42) of subjects preferred CL and 11.9% (5/42) preferred OL SCS. SCS dose consistency during CL SCS was demonstrated by the reduced variability in ECAP amplitude with CL SCS (SD: 8.72 µV) relative to OL SCS (SD: 19.95 µV). Together, these results demonstrate that the ECAP-controlled, CL algorithm reduces or eliminates unwanted sensation, and thereby provides a more preferred and consistent SCS experience. PERSPECTIVE: Patients with chronic pain need durable and dependable options for pain relief. SCS is an important therapy option, and new technology advancements could improve long-term therapy use. Closed-loop SCS offers a preferred and more consistent therapy experience for patients that could lead to increased therapy utilization and reliable therapy outcomes.

14.
Brain ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052924

RESUMO

Brain-responsive neurostimulation is firmly ensconced among treatment options for drug-resistant focal epilepsy, but over a quarter of patients treated with the RNS System do not experience meaningful seizure reduction. Initial titration of RNS therapy is typically similar for all patients, raising the possibility that treatment response might be enhanced by consideration of patient-specific variables. Indeed, small, single-center studies have yielded preliminary evidence that RNS System effectiveness depends on the brain state during which stimulation is applied. The generalizability of these findings remains unclear, however, and it is unknown whether state-dependent effects of responsive neurostimulation are also stratified by location of the seizure onset zone where stimulation is delivered. We aimed to determine whether state-dependent effects of the RNS System are evident in the large, diverse, multi-center cohort of RNS System clinical trial participants and to test whether these effects differ between mesiotemporal and neocortical epilepsies. Eighty-one of 256 patients who were treated with the RNS System across 31 centers during clinical trials met criteria for inclusion in this retrospective study. Risk states were defined in relation to phases of daily and multi-day cycles of interictal epileptiform activity that are thought to determine seizure likelihood. We found that the probabilities of risk state transitions depended on the stimulation parameter being changed, the starting seizure risk state, and the stimulated brain region. Changes in two commonly adjusted stimulation parameters, charge density and stimulation frequency, produced opposite effects on risk state transitions depending on seizure localization. Greater variance in acute risk state transitions was explained by state-dependent responsive neurostimulation for bipolar stimulation for neocortical epilepsies and for monopolar stimulation for mesiotemporal epilepsies. Variability in effectiveness of RNS System therapy across individuals may relate, at least partly, to the fact that current treatment paradigms do not account fully for fluctuations in brain states or locations of simulation sites. State-dependence of electrical brain stimulation may inform development of next-generation closed-loop devices that can detect changes in brain state and deliver adaptive, localization-specific patterns of stimulation to maximize therapeutic effects.

15.
Endocr Pract ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053588

RESUMO

BACKGROUND: Automated insulin delivery systems (AID) are a rapidly growing component in the area of continuous subcutaneous insulin infusion (CSII) therapy. As more patients use these systems in the outpatient setting, it is important to assess safety if their use is allowed to continue in the inpatient setting. METHODS: Analysis was conducted of the records of patients using AID technology upon admission to our hospital between June 2020 and December 2022. Adverse events and glycemic control of AID users were compared to patients using non-AID systems and to patients who had CSII discontinued. RESULTS: There were 185 patients analyzed: 64 on AID, 86 on non-AID, and 35 who had CSII discontinued. The number of patients on AID increased over the course of the observation period, while non-AID users decreased. Pair-wise comparisons indicated that patient-stay mean glucose levels and percentage of hypoglycemic events were similar between all groups, but the percentage of patient hyperglycemic measurements was significantly lower in the AID cohort. No adverse events (diabetic ketoacidosis, pump site complications, equipment malfunction) were reported in any either CSII cohort. CONCLUSION: The type of CSII technology encountered in the hospital is shifting from non-AID towards AID technologies. This analysis supports earlier findings that outpatient AID systems can be successfully transitioned into the inpatient setting. Further study is needed to define if AID systems offer any advantage in glycemic control.

16.
Brain Stimul ; 17(4): 850-859, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029737

RESUMO

BACKGROUND: Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS: We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS: We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS: WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS: Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.

17.
Front Neurosci ; 18: 1406814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962177

RESUMO

Introduction: Decoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. Methods: Participants perform a working memory experiment called the n-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. Results: A relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. Discussion: Findings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.

18.
Pain Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954217

RESUMO

INTRODUCTION: Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. METHODS: This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. RESULTS: A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7-99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1-1.4) and dose accuracy of 4.4 µV (0.0-7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold > 80%, dose ratio > 1.2, and error < 10 µV). CONCLUSIONS: In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient-device interaction metrics. CLINICAL TRIAL REGISTRATION: In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.

19.
Trials ; 25(1): 449, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961468

RESUMO

BACKGROUND: One single-center randomized clinical trial showed that INTELLiVENT-adaptive support ventilation (ASV) is superior to conventional ventilation with respect to the quality of ventilation in post-cardiac surgery patients. Other studies showed that this automated ventilation mode reduces the number of manual interventions at the ventilator in various types of critically ill patients. In this multicenter study in patients post-cardiac surgery, we test the hypothesis that INTELLiVENT-ASV is superior to conventional ventilation with respect to the quality of ventilation. METHODS: "POStoperative INTELLiVENT-adaptive support VEntilation in cardiac surgery patients II (POSITiVE II)" is an international, multicenter, two-group randomized clinical superiority trial. In total, 328 cardiac surgery patients will be randomized. Investigators screen patients aged > 18 years of age, scheduled for elective cardiac surgery, and expected to receive postoperative ventilation in the ICU for longer than 2 h. Patients either receive automated ventilation by means of INTELLiVENT-ASV or ventilation that is not automated by means of a conventional ventilation mode. The primary endpoint is quality of ventilation, defined as the proportion of postoperative ventilation time characterized by exposure to predefined optimal, acceptable, and critical (injurious) ventilatory parameters in the first two postoperative hours. One major secondary endpoint is ICU team staff workload, captured by the ventilator software collecting manual settings on alarms. Patient-centered endpoints include duration of postoperative ventilation and length of stay in ICU. DISCUSSION: POSITiVE II is the first international, multicenter, randomized clinical trial designed to confirm that POStoperative INTELLiVENT-ASV is superior to non-automated conventional ventilation and secondary to determine if this closed-loop ventilation mode reduces ICU team staff workload. The results of POSITiVE II will support intensive care teams in their choices regarding the use of automated ventilation in postoperative care of uncomplicated cardiac surgery patients. TRIAL REGISTRATION: Clinicaltrials.gov NCT06178510 . Registered on December 4, 2023.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Estudos Multicêntricos como Assunto , Humanos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Respiração Artificial/métodos , Resultado do Tratamento , Cuidados Pós-Operatórios/métodos , Fatores de Tempo , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos de Equivalência como Asunto , Unidades de Terapia Intensiva
20.
Front Endocrinol (Lausanne) ; 15: 1347141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966218

RESUMO

Background and aims: Cystic fibrosis related diabetes (CFRD) is correlated with worsening of nutritional status and greater deterioration of lung function. The role of new technologies for the treatment of CFRD is little explored. The aim of the study was to evaluate the efficacy of Advanced Hybrid Closed Loop (AHCL) systems on glycemic control in CF patients. Methods: A single-center retrospective study on CFRD patients using AHCL systems was performed. Glycated hemoglobin (HbA1c) values and Continuous Glucose Monitoring (CGM) metrics were collected at T0 (AHCL placement), T1 (1-month), T2 (6-months) and T3 (1-year) to evaluate glycemic control. Results: 10 patients were included in the study. Data showed a reduction of HbA1c value (7.31 ± 0.34 to 6.35 ± 1.00; p=0.03), glycemic variability (p=0.05) and insulin requirement (p=0.03). The study population reached American Diabetes Association (ADA) recommended glycemic targets at 1-year. An increase in the Time in Range (TIR) and a reduction in time in hyperglycemia were also observed, although not statistically significant. Conclusions: In patients with CFRD, the use of AHCL leads to an improvement in glycemic control in terms of HbA1c and glycemic variability. The increase in TIR and the reduction of time in hyperglycemia, although not statistically significant, are extremely encouraging from a clinical point of view. Further studies with a larger population and a longer follow-up are needed. The results of this study demonstrate the importance of proposing the use of AHCL even in CF patients, who could benefit from glycemic improvement also in terms of nutritional status and respiratory function.


Assuntos
Glicemia , Fibrose Cística , Diabetes Mellitus , Hemoglobinas Glicadas , Controle Glicêmico , Humanos , Fibrose Cística/complicações , Projetos Piloto , Masculino , Feminino , Estudos Retrospectivos , Glicemia/análise , Glicemia/metabolismo , Hemoglobinas Glicadas/análise , Controle Glicêmico/métodos , Adulto , Automonitorização da Glicemia/métodos , Adolescente , Sistemas de Infusão de Insulina , Adulto Jovem , Insulina/uso terapêutico , Insulina/administração & dosagem , Hipoglicemiantes/uso terapêutico , Criança , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA