Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Front Microbiol ; 15: 1424568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091307

RESUMO

Environmental heterogeneity partly drives microbial succession in arthropods, while the microbial assembly mechanisms during environmental changes remain largely unknown. Here, we explored the temporal dynamics and assembly mechanisms within both bacterial and fungal communities in Liriomyza huidobrensis (Blanchard) during the transition from field to laboratory conditions. We observed a decrease in bacterial diversity and complexity of bacterial-fungal co-occurrence networks in leaf miners transitioning from wild to captive environments. Both neutral and null models revealed that stochastic processes, particularly drift (contributing over 70%), play a crucial role in governing bacterial and fungal community assembly. The relative contribution of ecological processes such as dispersal, drift, and selection varied among leaf miners transitioning from wild to captive states. Furthermore, we propose a hypothetical scenario for the assembly and succession of microbial communities in the leaf miner during the short- and long-term transition from the wild to captivity. Our findings suggest that environmental heterogeneity determines the ecological processes governing bacterial and fungal community assembly in leaf miners, offering new insights into microbiome and mycobiome assembly mechanisms in invasive pests amidst environmental change.

2.
Heliyon ; 10(14): e34084, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108877

RESUMO

Work-life balance has gained increasing popularity among scholars and practitioners since the beginning of the century. Despite significant attempts to consolidate this burgeoning field, the scholarly knowledge on work-life balance research remains fragmented and detached due to extant number of publications in the area and the mostly subjective approaches used to encapsulate the literature. As such, the current study presents an objective overview of work-life balance research between 2000 and 2020. Using bibliometric techniques, the authors examined 1190 articles indexed in Scopus database to identify the conceptual structure and current dynamics in the field. During the critical period between the reconceptualization of word-life balance and the emergence of COVID-19 pandemic, the findings reveal that the field was growing exponentially as a multidisciplinary research area. Most of the scholarly work originated in the US, UK, and Australia with a "locally-centralized-globally-discrete" collaboration pattern among scholars. The most relevant and developed research themes included, in addition to work-life balance, topics related to gender and family life. Furthermore, new emerging research directions had evolved beyond the traditional constructs including job security, flexible working hours, individual productivity, and work-life conflicts. The study contributes to the current knowledge on work-life balance by providing critical insights into the evolution of the field and offers potential avenues for scholars who are interested in this critical research domain and the changes it has experienced post pandemic.

3.
Eur J Protistol ; 95: 126108, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39111267

RESUMO

Protists can endure challenging environments sustaining key ecosystem processes of the microbial food webs even under aridic or hypersaline conditions. We studied the diversity of protists at different latitudes of the Atacama Desert by massive sequencing of the hypervariable region V9 of the 18S rRNA gene from soils and microbial mats collected in the Andes. The main protist groups in soils detected in active stage through cDNA were cercozoans, ciliates, and kinetoplastids, while the diversity of protists was higher including diatoms and amoebae in the microbial mat detected solely through DNA. Co-occurrence networks from soils indicated similar assemblages dominated by amplicon sequence variants (ASVs) identified as Rhogostoma, Euplotes, and Neobodo. Microbial mat networks, on the other hand, were structured by ASVs classified as raphid-pennate diatoms and amoebae from the genera Hartmannella and Vannella, mostly negatively correlated to flagellates and microalgae. Additionally, our phylogenetic inferences of ASVs classified as Euplotes, Neobodo, and Rhogostoma were supported by sequence data of strains isolated during this study. Our results represent the first snapshot of the diversity patterns of culturable and unculturable protists and putative keystone taxa detected at remote habitats from the Atacama Desert.

4.
Front Microbiol ; 15: 1449922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113843

RESUMO

Introduction: Currently, straw biodegradation and soil improvement in rice-mushroom rotation systems have attracted much attention. However, there is still a lack of studies on the effects of rice-mushroom rotation on yield, soil properties and microbial succession. Methods: In this study, no treatment (CK), green manure return (GM) and rice straw return (RS) were used as controls to fully evaluate the effect of Stropharia rugosoannulata cultivation substrate return (SRS) on soil properties and microorganisms. Results: The results indicated that rice yield, soil nutrient (organic matter, organic carbon, total nitrogen, available nitrogen and available potassium) and soil enzyme (urease, saccharase, lignin peroxidase and laccase) activities had positive responses to the rice-mushroom rotation. At the interannual level, microbial diversity varied significantly among treatments, with the rice-mushroom rotation significantly increasing the relative alpha diversity index of soil bacteria and enriching beneficial microbial communities such as Rhizobium, Bacillus and Trichoderma for rice growth. Soil nutrients and enzymatic activities were significantly correlated with microbial communities during rice-mushroom rotation. The fungal-bacterial co-occurrence networks were modular, and Latescibacterota, Chloroflexi, Gemmatimonadota and Patescibacteria were closely related to the accumulation of nutrients in the soil. The structural equation model (SEM) showed that fungal diversity responded more to changes in soil nutrients than did bacterial diversity. Discussion: Overall, the rice-mushroom rotation model improved soil nutrients and rice yields, enriched beneficial microorganisms and maintained microbial diversity. This study provides new insights into the use of S. rugosoannulata cultivation substrates in the sustainable development of agroecosystems.

5.
BMC Bioinformatics ; 25(1): 266, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143554

RESUMO

BACKGROUND: Construction of co-occurrence networks in metagenomic data often employs correlation to infer pairwise relationships between microbes. However, biological systems are complex and often display qualities non-linear in nature. Therefore, the reliance on correlation alone may overlook important relationships and fail to capture the full breadth of intricacies presented in underlying interaction networks. It is of interest to incorporate metrics that are not only robust in detecting linear relationships, but non-linear ones as well. RESULTS: In this paper, we explore the use of various mutual information (MI) estimation approaches for quantifying pairwise relationships in biological data and compare their performances against two traditional measures-Pearson's correlation coefficient, r, and Spearman's rank correlation coefficient, ρ. Metrics are tested on both simulated data designed to mimic pairwise relationships that may be found in ecological systems and real data from a previous study on C. diff infection. The results demonstrate that, in the case of asymmetric relationships, mutual information estimators can provide better detection ability than Pearson's or Spearman's correlation coefficients. Specifically, we find that these estimators have elevated performances in the detection of exploitative relationships, demonstrating the potential benefit of including them in future metagenomic studies. CONCLUSIONS: Mutual information (MI) can uncover complex pairwise relationships in biological data that may be missed by traditional measures of association. The inclusion of such relationships when constructing co-occurrence networks can result in a more comprehensive analysis than the use of correlation alone.


Assuntos
Metagenômica , Metagenômica/métodos , Algoritmos , Metagenoma/genética
6.
Microbiome ; 12(1): 160, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215347

RESUMO

BACKGROUND: Cabbage Fusarium wilt (CFW) is a devastating disease caused by the soil-borne fungus Fusarium oxysporum f. sp. conglutinans (Foc). One of the optimal measures for managing CFW is the employment of tolerant/resistant cabbage varieties. However, the interplay between plant genotypes and the pathogen Foc in shaping the rhizosphere microbial community, and the consequent influence of these microbial assemblages on biological resistance, remains inadequately understood. RESULTS: Based on amplicon metabarcoding data, we observed distinct differences in the fungal alpha diversity index (Shannon index) and beta diversity index (unweighted Bray-Curtis dissimilarity) within the rhizosphere of the YR (resistant to Foc) and ZG (susceptible to Foc) cabbage varieties, irrespective of Foc inoculation. Notably, the Shannon diversity shifts in the resistant YR variety were more pronounced following Foc inoculation. Disease-resistant plant variety demonstrate a higher propensity for harboring beneficial microorganisms, such as Pseudomonas, and exhibit superior capabilities in evading harmful microorganisms, in contrast to their disease-susceptible counterparts. Furthermore, the network analysis was performed on rhizosphere-associated microorganisms, including both bacteria and fungi. The networks of association recovered from YR exhibited greater complexity, robustness, and density, regardless of Foc inoculation. Following Foc infection in the YR rhizosphere, there was a notable increase in the dominant bacterium NA13, which is also a hub taxon in the microbial network. Reintroducing NA13 into the soil significantly improved disease resistance in the susceptible ZG variety, by directly inhibiting Foc and triggering defense mechanisms in the roots. CONCLUSIONS: The rhizosphere microbial communities of these two cabbage varieties are markedly distinct, with the introduction of the pathogen eliciting significant alterations in their microbial networks which is correlated with susceptibility or resistance to soil-borne pathogens. Furthermore, we identified a rhizobacteria species that significantly boosts disease resistance in susceptible cabbages. Our results indicated that the induction of resistance genes leading to varied responses in microbial communities to pathogens may partly explain the differing susceptibilities of the cabbage varieties tested to CFW. Video Abstract.


Assuntos
Brassica , Resistência à Doença , Fusarium , Microbiota , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Brassica/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Fusarium/genética , Microbiota/genética , Bactérias/classificação , Bactérias/genética , Raízes de Plantas/microbiologia , Fungos/genética , Fungos/classificação
7.
Front Microbiol ; 15: 1391193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132137

RESUMO

While afforestation mitigates climate concerns, the impact of afforestation on ecological assembly processes and multiple soil functions (multifunctionality) in afforested areas remains unclear. The Xiong'an New Area plantation forests (Pinus and Sophora forests) in North China were selected to examine the effects of plantation types across four distinct seasons on soil microbiomes. Three functional categories (nutrient stocks, organic matter decomposition, and microbial functional genes) of multifunctionality and the average (net) multifunctionality were quantified. All these categories are directly related to soil functions. The results showed that net soil multifunctionality as a broad function did not change seasonally, unlike other narrow functional categories. Bacterial communities were deterministically (variable selection and homogenous selection) structured, whereas the stochastic process of dispersal limitation was mainly responsible for the assembly and turnover of fungal and protist communities. In Pinus forests, winter initiates a sudden shift from deterministic to stochastic processes in bacterial community assembly, accompanied by decreased Shannon diversity and heightened nutrient cycling (nutrient stocks and organic matter decomposition). This indicates the potential vulnerability of deterministic assembly to seasonal fluctuations, particularly in environments rich in nutrients. The results predicted that protist community composition was uniquely structured with C-related functional activities relative to bacterial and fungal ß-diversity variations, which were mostly explained by seasonal variations. Our study highlighted the importance of the protist phagocytosis process on soil microbial interactions through the predicted impact of protist α-diversity on microbial cooccurrence network parameters. This association might be driven by the high abundance of protist consumers as the main predators of bacterial and fungal lineages in our sampling plots. Our findings reveal that the complexity of microbial co-occurrence interactions was considerably higher in spring, perhaps attributing thermal variability and increased resource availability within spring that foster microbial diversity and network complexity. This study contributes to local ecosystem prospects to model the behavior of soil biota seasonally and their implied effects on soil functioning and microbial assembly processes, which will benefit global-scale afforestation programs by promoting novel, precise, and rational plantation forests for future environmental sustainability and self-sufficiency.

8.
Front Microbiol ; 15: 1381883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952448

RESUMO

Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.

9.
Microb Ecol ; 87(1): 96, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046558

RESUMO

In aquatic ecosystems with low nutrient levels, organic aggregates (OAs) act as nutrient hotspots, hosting a diverse range of microbial species compared to those in the water column. Lake eutrophication, marked by intensified and prolonged cyanobacterial blooms, significantly impacts material and energy cycling processes, potentially altering the ecological traits of both free-living (FL) and particle-attached (PA) bacteria. However, the extent to which observed patterns of FL and PA bacterial diversity, community assembly, and stability extend to hypereutrophic lakes remains understudied. To address this gap, we investigated bacterial diversity, composition, assembly processes, and stability within hypereutrophic Lake Xingyun. Our results revealed that FL bacterial communities exhibited higher α-diversity than PA counterparts, coupled with discernible taxonomic compositions. Both bacterial communities showed distinct seasonality, influenced by cyanobacterial bloom intensity. Environmental factors accounted for 71.1% and 54.2% of the variation among FL and PA bacteria, respectively. The assembly of the PA bacterial community was predominantly stochastic, while FL assembly was more deterministic. The FL network demonstrated greater stability, complexity, and negative interactions, indicative of competitive relationships, while the PA network showed a prevalence of positive correlations, suggesting mutualistic interactions. Importantly, these findings differ from observations in oligotrophic, mesotrophic, and eutrophic lakes. Overall, this research provides valuable insights into the interplay among bacterial fractions, enhancing our understanding of nutrient status and cyanobacterial blooms in shaping bacterial communities.


Assuntos
Bactérias , Biodiversidade , Cianobactérias , Eutrofização , Lagos , Microbiota , Lagos/microbiologia , Cianobactérias/genética , Cianobactérias/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Estações do Ano , Ecossistema , China
10.
Microorganisms ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065202

RESUMO

Reducing nitrogen fertilizer application highlights its role in optimizing soil bacterial communities to achieve sustainable agriculture. However, the specific mechanisms of bacterial community change under these conditions are not yet clear. In this study, we employed long-term field experiments and high-throughput sequencing to analyze how varying levels of nitrogen application influence the soil bacterial community structure and co-occurrence networks. The results show that reducing the nitrogen inputs significantly enhances the diversity and evenness of the soil bacterial communities, possibly due to the diminished dominance of nitrogen-sensitive taxa, which in turn liberates the ecological niches for less competitive species. Furthermore, changes in the complexity and stability of the bacterial co-occurrence networks suggest increased community resilience and a shift toward more mutualistic interactions. These findings underline the potential of reduced nitrogen application to alleviate competitive pressures among bacterial species, thereby promoting a more diverse and stable microbial ecosystem, highlighting the role of competitive release in fostering microbial diversity. This research contributes to our understanding of how nitrogen management can influence soil health and offers insights into sustainable agricultural practices.

11.
Sci Total Environ ; 948: 174596, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38997023

RESUMO

The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO3--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.


Assuntos
Archaea , Microbiota , Microbiologia do Solo , Poluentes do Solo , Instalações de Eliminação de Resíduos , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Bactérias/classificação , Solo/química , Monitoramento Ambiental , Metais Pesados/análise , Fungos , Poluentes Químicos da Água/análise , China
12.
Sci Total Environ ; 948: 174935, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053530

RESUMO

Forest restoration is an effective method for restoring degraded soil ecosystems (e.g., converting primary tropical forests into rubber monoculture plantations; RM). The effects of forest restoration on microbial community diversity and composition have been extensively studied. However, how rubber plantation-based forest restoration reshapes soil microbial communities, networks, and inner assembly mechanisms remains unclear. Here, we explored the effects of jungle rubber mixed (JRM; secondary succession and natural restoration of RM) plantation and introduction of rainforest species (AR; anthropogenic restoration established by mimicking the understory and overstory tree species of native rainforests) to RM stands on soil physico-chemical properties and microbial communities. We found that converting tropical rainforest (RF) to RM decreased soil fertility and simplified microbial composition and co-occurrence patterns, whereas the conversion of RM to JRM and AR exhibited opposite results. These changes were significantly correlated with pH, soil moisture content (SMC), and soil nutrients, suggesting that vegetation restoration can provide a favorable soil microenvironment that promotes the development of soil microorganisms. The complexity and stability of the bacterial-fungal cross-kingdom, bacterial, and fungal networks increased with JRM and AR. Bacterial community assembly was primarily governed by stochastic (78.79 %) and deterministic (59.09 %) processes in JRM and AR, respectively, whereas stochastic processes (limited dispersion) predominantly shaped fungal assembly across all forest stands. AR has more significant benefits than JRM, such as a relatively slower and natural vegetation succession with more nutritive soil conditions, microbial diversity, and complex and stable microbial networks. These results highlight the importance of sustainable forest management to restore soil biodiversity and ecosystem functions after extensive soil degradation and suggest that anthropogenic restoration can more effectively improve soil quality and microbial communities than natural restoration in degraded rubber plantations.


Assuntos
Microbiota , Microbiologia do Solo , Borracha , Solo/química , Hevea , Floresta Úmida , Recuperação e Remediação Ambiental/métodos , Fungos , Bactérias , Florestas
13.
Food Res Int ; 191: 114698, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059954

RESUMO

Environmental microorganisms commonly inhabit dense multispecies biofilms, fostering mutualistic relationships and co-evolution. However, the mechanisms underlying biofilm formation and microbial interactions within the Baijiu fermentation microecosystem remain poorly understood. Hence, the objective of this study was to investigate the composition, structure, and interactions of microorganisms residing in biofilms on environmental surfaces in Baijiu production. The results revealed a shift in the bacteria-fungi interaction network following fermentation, transitioning from a cooperative/symbiotic relationship to a competitive/antagonistic dynamic. Core microbiota within the biofilms comprised lactic acid bacteria (LAB), yeast, and filamentous fungi. From the environmental surface samples, we isolated two strains of LAB (Lactiplantibacillus pentosus EB27 and Pediococcus pentosaceus EB35) and one strain of yeast (Pichia kudriavzevii EF8), all displaying remarkable biofilm formation and fermentation potential. Co-culturing LAB and yeast demonstrated a superior capacity for dual-species biofilm formation compared to mono-species biofilms. The dual-species biofilm displayed a two-layer structure, with LAB in the lower layer and serving as the foundation for the yeast community in the upper layer. The upper layer exhibited a dense distribution of yeast, enhancing aerobic respiration. Metabolic activities in the dual-species biofilm, such as ABC transporter, oxidative phosphorylation, citric acid cycle, sulfur metabolism, glycine, serine, threonine metabolism, lysine degradation, and cysteine and methionine metabolism, showed significant alterations compared to LAB mono-species biofilms. Moreover, bacterial chemotaxis, starch, and sucrose metabolism in the dual-species biofilm exhibited distinct patterns from those observed in the yeast mono-species biofilm. This study demonstrated that a core microbiota with fermentation potential may exist in the form of a biofilm on the surface of a Baijiu brewing environment. These findings provide a novel strategy for employing synthetic stable microbiotas in the intelligent brewing of Baijiu.


Assuntos
Biofilmes , Fermentação , Interações Microbianas , Biofilmes/crescimento & desenvolvimento , Interações Microbianas/fisiologia , Microbiologia de Alimentos , Cerveja/microbiologia , Microbiota/fisiologia , Técnicas de Cocultura , Lactobacillales/metabolismo , Lactobacillales/fisiologia , Fungos/metabolismo , Fungos/fisiologia , Pediococcus pentosaceus/metabolismo
14.
Front Microbiol ; 15: 1353940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721596

RESUMO

Introduction: An increasing number of studies have demonstrated the pivotal role of microbiota changes in the onset, progression, diagnosis, treatment, and prognosis of lung adenocarcinoma (LUAD). However, a comprehensive analysis of intratumoral microbiome variation across distinct LUAD stages has not been performed. The aim of this study was to identify the microbial markers that significantly vary during tumor stage of LUAD. Methods: Here, we used the cancer genome atlas (TCGA) database to comprehensively compare and analyze the differences in microbial composition between 267 patients with early and 224 patients with advanced LUAD. In order to determine the best biomarkers, we used the random forest (RF) model and found that the microbial markers have a certain ability in predicting the stage of LUAD. Results: We found that there were certain differences in the microbiome of patients with LUAD at different stages, especially in the tumor tissues of patients with advanced LUAD, whose co-abundance network was significantly more complex. We also found that five bacterial biomarkers (Pseudoalteromonas, Luteibacter, Caldicellulosiruptor, Loktanella, and Serratia) were correlated with LUAD stage, among which Pseudoalteromonas, Luteibacter, Caldicellulosiruptor, and Serratia were significantly overexpressed in patients with advanced LUAD. In particular, after integrating the biomarkers of mRNA, we achieved an area under the curve (AUC) of 0.70. Discussion: Our study revealed the microbial profile of patients with LUAD and the intrinsic pathogenic mechanism between the microbiome and the disease, and established a multi-omics model to determine LUAD tumor stage.

15.
Environ Res ; 252(Pt 3): 119042, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692420

RESUMO

Oxbow lake formation and evolution have significant impacts on the fragile Yellow River Basin ecosystem. However, the effects of different oxbow lake evolutionary stages on sediment microbial community structure are not yet understood comprehensively. Therefore, microbial community structure in three stages of oxbow lake succession, namely, lotic lake (early stage), semi-lotic lake (middle stage), and lentic lake (late stage), was investigated in the present study in the Yellow River Basin on the Qinghai-Tibet Plateau. Amplicon sequencing was employed to reveal differences in microbial community diversity and composition. The bacterial and fungal communities in sediment were significantly different among the three succession stages and were driven by different environmental factors. In particular, bacterial community structure was influenced primarily by nitrate-nitrogen (N), microbial biomass phosphorus, and total carbon (C) and organic C in the early, middle, and late stages, respectively. Conversely, fungal community structure was influenced primarily by ammonium-N in the early stage and by moisture content in the middle and late stages. However, the predicted functions of the microbial communities did not exhibit significant differences across the three succession stages. Both bacteria and fungi were influenced significantly by stochastic factors. Homogeneous selection had a high relative contribution to bacteria community assembly in the middle stage, whereas the relative contributions of heterogeneous selection processes to fungal community assembly increased through the three stages. As succession time increased, the total number of keystone species increased gradually, and the late succession stage had high network complexity and the highest network stability. The findings could facilitate further elucidation of the evolution mechanisms of oxbow lake source area, high-altitude river evolution dynamics, in addition to aiding a deeper understanding of the long-term ecological evolution patterns of source river ecosystems.


Assuntos
Sedimentos Geológicos , Lagos , Microbiota , Rios , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Rios/microbiologia , Rios/química , Bactérias/genética , Bactérias/classificação , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , China
16.
Front Microbiol ; 15: 1384367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751717

RESUMO

Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions.

17.
Res Sq ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562856

RESUMO

Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx) in these conditions are associated with accelerated lung function decline and higher mortality rates. An understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in airway microbial community profiles. We analyzed bacterial communities in 880 CF sputum samples and developed microbiome descriptors to model community reorganization prior to and during 18 PEx. We identified two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx showed hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx displayed stochasticity and increased diversity. A simulation of antimicrobial treatment predicted better efficacy for hierarchically organized communities. This link between PEx type, microbiome organization, and treatment success advances the development of personalized clinical management in CF and, potentially, other obstructive lung diseases.

18.
Sci Total Environ ; 931: 172714, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679108

RESUMO

Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean-maize intercropping in one row (IS), and soybean-maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha-1 (N110) and 180 kg N ha-1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.


Assuntos
Agricultura , Glycine max , Microbiota , Rizosfera , Microbiologia do Solo , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Agricultura/métodos , Nitrogênio/metabolismo , Produção Agrícola/métodos , Raízes de Plantas/microbiologia , Bactérias/metabolismo
19.
Plant Dis ; 108(8): 2472-2483, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549276

RESUMO

Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and how endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cultivar Tiegun. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16 to 40 cm than those at a depth of 0 to 15 and 41 to 70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial α-diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.


Assuntos
Dioscorea , Microbiota , Doenças das Plantas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Simbiose , Tylenchoidea , Animais , Dioscorea/microbiologia , Dioscorea/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Tylenchoidea/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nematoides/fisiologia , Nematoides/microbiologia
20.
Animals (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540034

RESUMO

The aim of this study was to assess the regional differences of Procambarus clarkii through analyzing gut microbiota in specimens from different areas in China. The P. clarkii were collected from ten integrated rice-crayfish farming systems locating across ten major producing areas as follows: Feixi (FX), Suqian (SQ), Yangzhou (YZ), Xuyi (XY), Qianjiang (QJ), Jianli (JL), Honghu (HH), Yueyang (YY), Changsha (CS), and Nanxian (NX). The composition of gut microbiota was assessed by analyzing 16S rRNA sequences. The PCoA results indicated significant differences in microbial community composition among the ten areas (R = 0.999, p = 0.001). The intestinal microbial diversity in P. clarkii cultured in rice fields from YY and CS exceeded that of other regions, with NX displaying the least diversity. At the phylum level, Proteobacteria were most abundant in HH, while Firmicutes showed increased relative abundances in FX and SQ, contrasted by lower relative abundances of Bacteroidetes in these areas. At the genus level, Ralstonia, Amedibacillus, Bacteroides, Anaerorhabdus, and Dysgonomonas were the dominant bacteria. The bacterial co-occurrence networks analysis revealed that the community structures in locations FX, SQ, XY, HH, and NX were comparatively simplistic, whereas those in the YZ, QJ, JL, YY, and CS regions displayed as more complex. In summary, the diversity and relative abundance of intestinal bacteria exhibits regional variability. These findings can offer theoretical data for evaluating the quality of P. clarkii aquaculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA