Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256947

RESUMO

Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1ß assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.

2.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190062

RESUMO

Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortality. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH patients showed increased intracellular cofilin localization within microglia in the perihematomal area, possibly associated with microglial activation and morphological changes. Various cohorts of mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14, 21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days, followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and interleukin-6 (IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-ß TGF-ß, and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading to widespread neuroinflammation and consequent PSCI.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Fatores de Despolimerização de Actina/metabolismo , Estudos Longitudinais , Hemorragia Cerebral/patologia , Hematoma/patologia , Lesões Encefálicas/patologia , Acidente Vascular Cerebral/metabolismo
3.
Biochem Biophys Res Commun ; 626: 200-204, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35994830

RESUMO

Various stress conditions induce the formation of actin-cofilin rods in either the nucleus or the cytoplasm, although the mechanism of rod formation is unclear. In this study, we constituted actin-cofilin rods using purified actin, cofilin and actin interacting protein 1 (AIP1) in the presence of a physiological buffer containing a crowding agent, 0.8% methylcellulose (MC), which led to bundled actin filaments formed by depletion forces. Most of the F-actin bundles formed with methylcellulose were linear, whereas cofilin-bound F-actin bundles often had bent, looped, and often ring-like shapes. Increasing the amount of AIP1 shortened actin-cofilin bundles into rod-like bundles with tapering at both ends. As much shorter actin-cofilin filaments were formed in the presence of AIP1 before MC was added to the mixture, the rod-like bundle might be a mass of those short filaments. Furthermore, the small rods fused with each other to become larger rods, indicating that these rods were anisotropic liquid droplets. Several minutes after the addition of MC to the F-actin-cofilin-AIP1 mixture, we observed some long bundles in which the thick and thin parts appear alternately, reminiscent of a Plateau-Rayleigh instability observed in fluid columns. Simultaneously, we found images in which thin parts were interrupted, but the thick parts were arranged in a row in the longitudinal direction. These structures were also observed in cytoplasmic actin-cofilin rods in cells overexpressing cofilin-GFP, suggesting that cytoplasmic actin-cofilin rods have the same structure formation process as the rods reconstituted in vitro.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Metilcelulose/metabolismo
4.
Biochem Biophys Res Commun ; 569: 187-192, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256187

RESUMO

Cofilin-1, an actin dynamizing protein, forms actin-cofilin rods, which is one of the major events that exacerbates the pathophysiology of amyloidogenic diseases. Cysteine oxidation in cofilin-1 under oxidative stress plays a crucial role in the formation of these rods. Others and we have reported that cofilin-1 possesses a self-oligomerization property in vitro and in vivo under physiological conditions. However, it remains elusive if cofilin-1 itself forms amyloid-like structures. We, therefore, hypothesized that cofilin-1 might form amyloid-like assemblies, with a potential to intensify the pathophysiology of amyloid-linked diseases. We used various in silico and in vitro techniques and examined the amyloid-forming propensity of cofilin-1. The study confirms that cofilin-1 possesses an intrinsic tendency of aggregation and forms amyloid-like structures in vitro. Further, we studied the effect of cysteine oxidation on the stability and structural features of cofilin-1. Our data show that oxidation at Cys-80 renders cofilin-1 unstable, leading to a partial loss of protein structure. The results substantiate our hypothesis and establish a strong possibility that cofilin-1 aggregation might play a role in cofilin-mediated pathology and the progression of several amyloid-linked diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Cofilina 1/metabolismo , Cisteína/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Cofilina 1/química , Cofilina 1/genética , Simulação por Computador , Cisteína/química , Cisteína/genética , Humanos , Modelos Moleculares , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Oxirredução , Pontuação de Propensão , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Estabilidade Proteica , Desdobramento de Proteína , Homologia de Sequência de Aminoácidos
5.
Front Physiol ; 7: 454, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774069

RESUMO

Actin plays a crucial role in regulating multiple processes within the nucleus, including transcription and chromatin organization. However, the polymerization state of nuclear actin remains controversial, and there is no evidence for persistent actin filaments in a normal interphase nucleus. Further, several disease pathologies are characterized by polymerization of nuclear actin into stable filaments or rods. These include filaments that stain with phalloidin, resulting from point mutations in skeletal α-actin, detected in the human skeletal disease intranuclear rod myopathy, and cofilin/actin rods that form in response to cellular stressors like heatshock. To further elucidate the effects of these pathological actin structures, we examined the nucleus in both cell culture models as well as isolated human tissues. We find these actin structures alter the distribution of both RNA polymerase II and chromatin. Our data suggest that nuclear actin filaments result in disruption of nuclear organization, which may contribute to the disease pathology.

6.
Bioarchitecture ; 2(6): 204-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23267414

RESUMO

The cofilin-actin rod stress response is an actin cytoskeletal dynamic arrest that occurs in cells under a variety of stress conditions. Upon stress, the rapidly activated cofilin saturates actin filaments causing them to bundle into rod structures in either the nucleus or cytoplasm, halting actin polymerization and thus freeing ATP. Importantly, these rods dissociate quickly following relief of the transient stress. The rods form inappropriately in neurons involved in the progression of Alzheimer disease (AD) and we have linked dysfunctional dynamics of the nuclear rod response to Huntington disease (HD). Cofilin levels are also perturbed in Parkinson disease (PD), and profilin, an actin binding protein with opposite action to cofilin, is mutated in Amyotrophic Lateral Sclerosis (ALS). The persistence of the rods post-stress suggests that critical molecular switches to turn this response both on and off are being affected in neurodegeneration. We have recently shown that the cofilin protein is regulated by highly conserved nuclear import and export signals and that these signals are required to be functional for an appropriate rod formation during stress. The ability of cofilin to form rods is required in a cell culture model for cells to be resistant to apoptosis under stress conditions, indicating that a normal cofilin-actin rod response is likely integral to proper cell health in higher order organisms. Here we hypothesize on the potential physiological function of nuclear cofilin-actin rods and why the dysregulation of this response could lead to the selective vulnerability of the most susceptible populations of cells in HD. We further suggest that learning more about this cytoskeletal cell stress response will open up new avenues for drug target discovery in neurodegenerative disorders.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Cofilina 1/metabolismo , Estresse Fisiológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA