RESUMO
Two branches of the scientific literature have dominated our understanding of hippocampal function. One focuses on the support this structure offers to declarative memory, while the other views the hippocampus as a part of a system dedicated to spatial navigation. These two different visions can be reconciled in relational theory, which suggests that the hippocampus processes all kinds of associations and sequences of events. According to this, processing would be similar to a route calculation based on associations of spatial information acquired during navigation and the associative relationship established between memories without spatial content. In this paper, we present a behavioral study of healthy individuals to explore the performance of inferential memory tasks and spatial orientation tasks in a virtual environment. Inferential memory and spatial orientation task performances were positively correlated. However, after controlling for a non-inferential memory task, only the correlation between allocentric spatial orientation and inferential memory remained significant. These results provide support for the similarity between the two cognitive functions, lending credence to the relational theory of the hippocampus. Additionally, our behavioral findings are in line with the cognitive map theory, which suggests a potential association between the hippocampus and allocentric spatial representations.
Assuntos
Orientação Espacial , Navegação Espacial , Humanos , Percepção Espacial , Cognição , Hipocampo , Memória EspacialRESUMO
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.