Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 18(1): 32, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34183024

RESUMO

Parity mode (oviparity/viviparity) importantly affects the ecology, morphology, physiology, biogeography and evolution of organisms. The main hypotheses explaining the evolution and maintenance of viviparity are based on bioclimatic predictions and also state that the benefits of viviparity arise during the reproductive period. We identify the main climatic variables discriminating between viviparous and oviparous Eurasian common lizard (Zootoca vivipara) occurrence records during the reproductive period and over the entire year.Analyses based on the climates during the reproductive period show that viviparous clades inhabit sites with less variable temperature and precipitation. On the contrary, analyses based on the annual climates show that viviparous clades inhabit sites with more variable temperatures.Results from models using climates during reproduction are in line with the "selfish-mother hypothesis", which can explain the success of viviparity, the maintenance of the two reproductive modes, and why viviparous individuals cannot colonize sites inhabited by oviparous ones (and vice versa). They suggest that during the reproductive period viviparity has an adaptive advantage over oviparity in less risky habitats thanks to the selfish behaviour of the mothers. Moreover, the results from both analyses stress that hypotheses about the evolution and maintenance of viviparity need to be tested during the reproductive period.

2.
J Evol Biol ; 34(7): 1167-1176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107111

RESUMO

It is of fundamental importance for the field of evolutionary biology to understand when and why major evolutionary transitions occur. Live-bearing young (viviparity) is a major evolutionary change and has evolved from egg-laying (oviparity) independently in many vertebrate lineages and most abundantly in lizards and snakes. Although contemporary viviparous squamate species generally occupy cold climatic regions across the globe, it is not known whether viviparity evolved as a response to cold climate in the first place. Here, we used available published time-calibrated squamate phylogenies and parity data on 3,498 taxa. We compared the accumulation of transitions from oviparity to viviparity relative to background diversification and a simulated binary trait. Extracting the date of each transition in the phylogenies and informed by 65 my of global palaeoclimatic data, we tested the nonexclusive hypotheses that viviparity evolved under the following: (a) cold, (b) long-term stable climatic conditions and (c) with background diversification rate. We show that stable and long-lasting cold climatic conditions are correlated with transitions to viviparity across squamates. This correlation of parity mode and palaeoclimate is mirrored by background diversification in squamates, and simulations of a binary trait also showed a similar association with palaeoclimate, meaning that trait evolution cannot be separated from squamate lineage diversification. We suggest that parity mode transitions depend on environmental and intrinsic effects and that background diversification rate may be a factor in trait diversification more generally.


Assuntos
Lagartos , Viviparidade não Mamífera , Animais , Evolução Biológica , Lagartos/genética , Oviparidade , Filogenia , Serpentes
3.
PeerJ ; 6: e6192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643683

RESUMO

The cold-climate hypothesis maintains that viviparity arose as a means to prevent increased egg mortality in nests owing to low temperatures, and this hypothesis represents the primary and most strongly supported explanation for the evolution of viviparity in reptiles. In this regard, certain authors have stated that viviparous species will exhibit speciation via climatic niche conservatism, with similar climatic niches being observed in allopatric sister species. However, this prediction remains to be tested with bioclimatic variables relevant to each viviparous group. In the present study, we examined climatic niche evolution in a group of North American viviparous lizards to determine whether their diversification is linked to phylogenetic niche conservatism (PNC). We evaluated the phylogenetic signal and trait evolution of individual bioclimatic variables and principal component (PC) scores of a PC analysis, along with reconstructions of ancestral climate tolerances. The results suggest that diversification of the Sceloporus torquatus group species is associated with both niche differentiation and PNC. Furthermore, we did not observe PNC across nearly all bioclimatic variables and in PC2 and PC3. However, in Precipitation Seasonality (Bio15), in Precipitation of Coldest Quarter (Bio19) and in PC1 (weakly associated with variability of temperature), we did observe PNC. Additionally, variation of the scores along the phylogeny and Pagel's delta (δ) >1 of PC3 suggests a fast, recent evolution to dry conditions in the clade that sustains S. serrifer.

4.
J Evol Biol ; 27(12): 2767-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365910

RESUMO

Viviparity, the bearing of live young, has evolved well over 100 times among squamate reptiles. This reproductive strategy is hypothesized to allow maternal control of the foetus' thermal environment and thereby to increase the fitness of the parents and offspring. Two hypotheses have been posited to explain this phenomenon: (i) the cold-climate hypothesis (CCH), which advocates low temperatures as the primary selective force; and (ii) the maternal manipulation hypothesis (MMH), which advocates temperature variability as the primary selective force. Here, we investigate whether climatic and geographic variables associated with the CCH vs. the MMH best explain the current geographical distributions of viviparity in lizards while incorporating recent advances in comparative methods, squamate phylogenetics and geospatial analysis. To do this, we compared nonphylogenetic and phylogenetic models predicting viviparity based on point-of-capture data from 20,994 museum specimens representing 215 lizard species in conjunction with spatially explicit bioclimatic and geographic (elevation and latitude) data layers. The database we analysed emphasized Nearctic lizards from three species-rich genera (Phrynosoma, Plestiodon and Sceloporus); however, we additionally analysed a less substantial, but worldwide sample of species to verify the universality of our Nearctic results. We found that maximum temperature of the warmest month (and, less commonly, elevation and maximum temperature of the driest quarter) was frequently the best predictor of viviparity and showed an association consistent with the CCH. Our results strongly favour the CCH over the MMH in explaining lizard reproductive mode evolution.


Assuntos
Evolução Biológica , Clima , Temperatura Baixa , Lagartos/fisiologia , Modelos Biológicos , Filogenia , Viviparidade não Mamífera/fisiologia , Animais , Feminino , Geografia , Especificidade da Espécie , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA