RESUMO
Background: Back and neck pain are leading causes of global disability that are associated with intervertebral disc (IVD) degeneration. Causes of IVD degeneration are multifactorial, and diet, age, and diabetes have all been linked to IVD degeneration. Advanced glycation endproducts (AGEs) accumulate in the IVD as a result of aging, diet, and diabetes, and AGE accumulation in the IVD has been shown to induce oxidative stress and catabolic activity that result in collagen damage. An association between AGE accumulation and IVD degeneration is emerging, yet mechanism behind this association remains unclear. The Receptor for AGEs (RAGE) is thought to induce catabolic responses in the IVD, and the AGE receptor Galectin 3 (Gal3) had a protective effect in other tissue systems but has not been evaluated in the IVD. Methods: This study used an IVD organ culture model with genetically modified mice to analyze the roles of RAGE and Gal3 in an AGE challenge. Results: Gal3 was protective against an AGE challenge in the murine IVD ex vivo, limiting collagen damage and biomechanical property changes. Gal3 receptor levels in the AF significantly decreased upon an AGE challenge. RAGE was necessary for AGE-induced collagen damage in the IVD, and RAGE receptor levels in the AF significantly increased upon AGE challenge. Discussion: These findings suggest both RAGE and Gal3 are important in the IVD response to AGEs and highlight Gal3 as an important receptor with protective effects on collagen damage. This research improves understanding the mechanisms of AGE-induced IVD degeneration and suggests Gal3 receptor modulation as a potential target for preventative and therapeutic treatment for IVD degeneration.
RESUMO
Liver fibrosis is characterized by excessive synthesis and deposition of extracellular matrix (ECM) in liver tissues. However, it still has been lacking of early detection and diagnosis methods. The collagen hybridizing peptide (CHP) is a novel synthetic peptide that enables detection of collagen damage and tissue remodeling. Here, we showed that obvious CHP-positive staining could be detected in the liver while given CCl4 for only 3 days, which was significantly enhanced while given CCl4 for 7 days. However, H&E staining showed no significant changes in fibrous tissue, and sirius red-positive staining could only be observed while given CCl4 for 14 days. Moreover, CHP-positive staining enhanced initially at portal area which further extended into the hepatic lobule, which was increased more significantly than sirius red-positive staining in the model of 10 and 14 days. Further proteomic analysis of CHP-positive staining revealed that pathways associated with ECM remodeling were significantly increased, while retinol metabolism was downregulated. Meanwhile, proteins enriched in cellular gene transcription and signal transduction involved in fibrogenesis were also upregulated, suggesting that fibrosis occurred in CHP-positive staining. Our study provided evidence that CHP could detect the collagen damage in liver, which might be an efficient indicator for the diagnosis of liver fibrosis at a very early stage.
Assuntos
Cirrose Hepática , Proteômica , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Colágeno/química , Peptídeos/químicaRESUMO
BACKGROUND: Ultraviolet exposure has profound effect on the dermal connective tissue of human skin. OBJECTIVE: We aimed to develop and validate an evaluation method/methodology using a full-thickness reconstructed skin model, to assess the anti-photoaging efficacy of cosmetic ingredients and sunscreen formulas by blending multi relevant biological endpoints including the newly developed dermal collagen quantification method with Multi-photon microscopy. METHODS: The response of ex vivo human skin to UVA exposure was first characterized with multiphoton microscopy. Reconstructed full-thickness skin models was then used to reproduce the data and to create a proof-of-concept study by treating the models with sunscreen prototypes A or B, which differ on their UVA absorption properties, and systemic Vitamin C (Vit C). After exposure to UVA, the collagen density was quantified via multiphoton microscopy with automatic imaging processing. Histology, fibroblasts number, metalloprotease 1 (MMP1) secretion were also assessed. RESULTS: UVA exposure induced pronounced reduction in collagen density and increased MMP1 secretion within both ex vivo human skin and reconstructed skin. Histological damage and fibroblast disappearance was observed with reconstructed skin. Within the proof-of-concept study prototype B, possessing higher UVA filtration, gave better protection than prototype A on the UV associated biological markers, and association with Vit C boosted sunscreen formula efficacy. CONCLUSIONS: The photoaging evaluation method, consists of multi biological markers as well as dermal collagen quantification, is a relevant mean to assess the pre-clinical efficacy of anti-photoaging ingredients and sunscreen products. This approach is also beneficial for evaluating the efficacy of sunscreens and photoprotective ingredients.
Assuntos
Colágeno , Avaliação Pré-Clínica de Medicamentos/métodos , Microscopia/métodos , Envelhecimento da Pele/efeitos dos fármacos , Protetores Solares , Humanos , Estudo de Prova de Conceito , Raios Ultravioleta/efeitos adversosRESUMO
The cornea of the eye is at risk for injury through constant exposure to the extraocular environment. A highly collagenous structure, the cornea contains several different types distributed across multiple layers. The anterior-most layer contains non-keratinized epithelial cells that serve as a barrier to environmental, microbial, and other insults. Renewal and migration of basal epithelial cells from the limbus involve critical interactions between secreted basement membranes, composed primarily of type IV collagen, and underlying Bowman's and stromal layers, which contain primarily type I collagen. This process is challenged in many diseases and conditions that insult the ocular surface and damage underlying collagen. We investigated the capacity of a collagen mimetic peptide (CMP), representing a fraction of a single strand of the damaged triple helix human type I collagen, to promote epithelial healing following an acute corneal wound. In vitro, the collagen mimetic peptide promoted the realignment of collagen damaged by enzymic digestion. In an in vivo mouse model, topical application of a CMP-containing formulation following a 360° lamellar keratectomy targeting the corneal epithelial layer accelerated wound closure during a 24 h period, compared to vehicle. We found that the CMP increased adherence of the basal epithelium to the underlying substrate and enhanced density of epithelial cells, while reducing variability in the regenerating layer. These results suggest that CMPs may represent a novel therapeutic to heal corneal tissue by repairing underlying collagen in conditions that damage the ocular surface.
RESUMO
OBJECTIVE: The interaction between proteoglycan loss and collagen damage in articular cartilage and the effect of mechanical loading on this interaction remain unknown. The aim of this study was to answer the following questions: (1) Is proteoglycan loss dependent on the amount of collagen damage and does it depend on whether this collagen damage is superficial or internal? (2) Does repeated loading further increase the already enhanced proteoglycan loss in cartilage with collagen damage? DESIGN: Fifty-six bovine osteochondral plugs were equilibrated in phosphate-buffered saline for 24 hours, mechanically tested in compression for 8 hours, and kept in phosphate-buffered saline for another 48 hours. The mechanical tests included an overloading step to induce collagen damage, creep steps to determine tissue stiffness, and cyclic loading to induce convection. Proteoglycan release was measured before and after mechanical loading, as well as 48 hours post-loading. Collagen damage was scored histologically. RESULTS: Histology revealed different collagen damage grades after the application of mechanical overloading. After 48 hours in phosphate-buffered saline postloading, proteoglycan loss increased linearly with the amount of total collagen damage and was dependent on the presence but not the amount of internal collagen damage. In samples without collagen damage, repeated loading also resulted in increased proteoglycan loss. However, repeated loading did not further enhance the proteoglycan loss induced by damaged collagen. CONCLUSION: Proteoglycan loss is enhanced by collagen damage and it depends on the presence of internal collagen damage. Cyclic loading stimulates proteoglycan loss in healthy cartilage but does not lead to additional loss in cartilage with damaged collagen.
Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/patologia , Bovinos , Colágeno , ProteoglicanasRESUMO
Osteochondral resurfacing implants are a promising treatment for focal cartilage defects. Several implant-factors may affect the clinical outcome of this treatment, such as the implant material stiffness and the accuracy of implant placement, known to be challenging. In general, softer implants are expected to be more accommodating for implant misalignment than stiffer implants, and motion is expected to increase effects from implant misalignment and stiffness. 3D finite element models of cartilage/cartilage contact were employed in which implantation angle (0°, 5°, 10°) and implant material stiffness (E = 5 MPa, 100 MPa, 2 GPa) were varied. A creep loading (0.6 MPa) was simulated, followed by a sliding motion. Creep loading resulted in low maximum collagen strains of 2.5% in the intact case compared to 11.7% with an empty defect. Implants mostly positively affected collagen strains, deviatoric strains, and hydrostatic pressures in the adjacent cartilage, but these effects were superior for correct alignment (0°). The main effect of implant misalignment was bulging of opposing cartilage tissue into the gap caused by the misalignment. This increased collagen strains and hydrostatic pressures. Deviatoric strains were increased adjacent to the gap. Subsequent sliding initially increased strains for a stiff, misaligned implant, but generally sliding decreased strains. In conclusion, implants can decrease the detrimental effect of defects, but correct implant alignment is crucial, more than implant material stiffness. Implant misalignment causes a gap, causing potentially damaging cartilage deformation during prolonged loading, for example, standing, even for soft implants. Mild motion may positively affect the cartilage. © 2018 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:2911-2922, 2018.
Assuntos
Artroplastia Subcondral , Modelos Biológicos , Análise de Elementos FinitosRESUMO
The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage.
Assuntos
Doenças das Cartilagens/fisiopatologia , Cartilagem Articular/fisiopatologia , Colágeno/fisiologia , Entorses e Distensões/fisiopatologia , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico , Resistência à TraçãoRESUMO
Experimental reports suggest that cartilage damage depends on strain magnitude. Additionally, because of its poro-viscoelastic nature, strain magnitude in cartilage can depend on strain rate. The present study explores whether cartilage damage may develop dependent on strain rate, even when the presented damage numerical model is strain-dependent but not strain-rate-dependent. So far no experiments have been distinguished whether rate-dependent cartilage damage occurs in the collagen or in the non-fibrillar network. Thus, this research presents a finite element analysis model where, among others, collagen and non-fibrillar matrix are incorporated as well as a strain-dependent damage mechanism for these components. Collagen and non-fibrillar matrix stiffness decrease when a given strain is reached until complete failure upon reaching a maximum strain. With such model, indentation experiments at increasing strain rates were simulated on cartilage plugs and damage development was monitored over time. Collagen damage increased with increasing strain rate from 21 to 42 %. In contrast, damage in the non-fibrillar matrix decreased with increasing strain rates from 72 to 34 %. Damage started to develop at a depth of approximately 20 % of the sample height, and this was more pronounced for the slow and modest loading rates. However, the most severe damage at the end of the compression step occurred at the surface for the plugs subjected to 120 mm/min strain rate. In conclusion, the present study confirms that the location and magnitude of damage in cartilage may be strongly dependent on strain rate, even when damage occurs solely through a strain-dependent damage mechanism.
Assuntos
Cartilagem Articular/lesões , Modelos Biológicos , Estresse Mecânico , Fenômenos Biomecânicos , Cartilagem Articular/patologia , Colágeno/metabolismo , Análise de Elementos FinitosRESUMO
OBJECTIVE: Proteoglycan (PG) loss and surface roughening, early signs of osteoarthritis (OA), are likely preceded by softening of the ground substance and the collagen network. Insight in their relative importance to progression of OA may assist the development of treatment strategies for early OA. To support interpretation of experimental data, a numerical model is proposed that can predict damage progression in cartilage over time, as a consequence of excessive mechanical loading. The objective is to assess the interaction between ground substance softening and collagen fiber damage using this model. DESIGN: An established cartilage mechanics model is extended with the assumption that excessive strains may damage the ground substance or the collagen network, resulting in softening of the overstrained constituent. During subsequent loading cycles the strain may or may not cross a threshold, resulting in damage to stabilize or to progress. To evaluate how softening of the ground substance and collagen may interact, damage progression is computed when either one of them, or both together are allowed to occur during stepwise increased loading. RESULTS: Softening in the ground substance was predicted to localize in the superficial and transitional zone and resulted in cartilage softening. Collagen damage was most prominent in the superficial zone, with more diffuse damage penetrating deeper into the tissue, resulting in adverse strain gradients. Effects were more pronounced if both constituents developed damage in parallel. CONCLUSION: Ground substance softening and collagen damage have distinct effects on cartilage mechanopathology, and damage in either one of them may promote each other.