Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399761

RESUMO

The wetlands of southwestern Siberia (SWS) are a crossroads of bird migration routes, bringing avian influenza (AIV) strains that were previously isolated in different regions of the continent to Siberia. It is known that Anseriformes that breed in SWS migrate for the winter to central Hindustan or further west, while their migration routes to southeast Asia (SEA) remain unconfirmed. Here, we mapped the molting sites of the migrating Common Teals (Anas crecca) via analyzing stable hydrogen isotope content in feathers of hunters' prey and supplemented the analysis with the genetic structure of viruses isolated from teals in the same region. Post-breeding molt of autumn teals most likely occurred within the study region, whereas probable pre-breeding molting grounds of spring teals were in the south of Hindustan. This link was supported by viral phylogenetic analysis, which showed a close relationship between SWS isolates and viruses from south and southeast Asia. Most viral segments have the highest genetic similarity and the closest phylogenetic relationships with viruses from teal wintering areas in southeast Asian countries, including India and Korea. We assume that the winter molt of SWS breeding teals on the Hindustan coast suggests contacts with the local avifauna, including species migrating along the coast to SEA. Perhaps this is one of the vectors of AIV transmission within Eurasia.

2.
Animals (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136916

RESUMO

Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.

3.
Animals (Basel) ; 13(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37760348

RESUMO

Understanding the dynamics of avian gut fungal communities and potentially pathogenic species across different seasons is crucial for assessing their health and ecological interactions. In this study, high-throughput sequencing was employed to examine the changes in gut fungal communities and the presence of potential pathogens between different seasons in captive Baikal teal and common teal. Between the summer and autumn seasons, both duck species showed significant differences in fungal diversity and community composition. A higher fungal diversity in both species was exhibited in the summer than in the autumn. Ascomycota and Basidiomycota were the two most common phyla, with a greater proportion of Ascomycota than Basidiomycota in both duck species in the summer. Interestingly, our study also identified animal pathogens and plant saprotrophs in the gut fungal communities. Seasonal variation had an effect on the diversity and abundance of both animal pathogens and saprotrophs. Specifically, during the summer season, the diversity and relative abundance were higher compared to the autumn season. In addition, there were differences between duck species in terms of animal pathogens, while no significant differences were observed in saprotrophs. Overall, the communities of the gut fungi, animal pathogens, and saprotrophs were found to be influenced by seasonal changes rather than host species. Therefore, seasonal variations might dominate over host genetics in shaping the gut microbiota of captive Baikal teal and common teal. This study underscores the importance of incorporating an understanding of seasonal dynamics and potential pathogens within the gut microbiota of captive ducks. Such considerations have the potential to drive progress in the development of sustainable and economically viable farming practices.

4.
Environ Geochem Health ; 45(5): 1919-1931, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35748971

RESUMO

Monitoring and evaluating bird exposure to hazardous pollutants in wetlands are receiving considerable attention. In this study, the occurrence of 18 organochlorine pesticides (OCPs) in the muscle of bean geese (Anser fabalis) and common teals (Anas crecca) collected from Honghu Lake Wetland (HLW), Central China was studied. Additionally, an exposure risk assessment model was applied to obtain risk levels of OCPs to these birds through three oral routes (food intake, water drinking and soil ingestion). The results suggested that the most abundant OCPs detected in the muscle of waterbirds were DDTs (7.68-602 ng/g lipid weight), followed by HCHs (1.39-89.8 ng/g lipid weight). A significant difference (p < 0.05) existed between two species, but most of OCPs exhibited no statistically relationship with age or gender (p > 0.05). The compositional patterns of OCPs combined with ratios of certain metabolites to their parent compounds indicated that all OCPs in the HLW were largely from historical usage except heptachlor. The exposure risk assessment revealed that common teals with lighter weight had greater exposure risks than bean geese. Of the OCPs analyzed, DDTs could probably cause harm to target birds studied here. Exposure via food intake was identified to be significant while soil ingestion and water drinking contributed least, but they should still be concerned.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Áreas Alagadas , Lagos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Praguicidas/toxicidade , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Solo , Aves , China , Medição de Risco , Água , Lipídeos
5.
Vet Microbiol ; 263: 109266, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34739966

RESUMO

High pathogenic avian influenza viruses (HPAIVs) of the H5 subtype have spread in poultry and wild birds worldwide. Current studies have highlighted the association between the migration of wild birds and the spread of HPAIVs. However, virological studies examining responsible species of migratory birds to spread HPAIVs are limited. In Japan, the common teal (Anas crecca) arrives in great numbers for overwintering every autumn-spring season; therefore, we performed experimental infection using six H5 HPAIVs isolated in past outbreaks in Japan (A/chicken/Yamaguchi/7/2004 (H5N1), A/whooper swan/Akita/1/2008 (H5N1), A/mandarin duck/Miyazaki/22M-765/2011 (H5N1), A/duck/Chiba/26-372-48/2014 (H5N8), A/duck/Hyogo/1/2016 (H5N6) and A/mute swan/Shimane/3211A002/2017 (H5N6)) to evaluate the susceptibility of the species to HPAIV infection. The results illustrated that most birds in all experimental groups were infected by the strains, and they shed viruses for a prolonged period, in trachea than cloaca, without displaying distinctive clinical signs. In addition, comparative analysis using calculation value of total viral shedding during the experiment revealed that the birds shed viruses at above a certain level regardless of the differences of strains. These results suggested that the common teal could be a migratory bird species that disseminates viruses in the environment, thereby influencing HPAI outbreaks in wild birds in Japan.


Assuntos
Suscetibilidade a Doenças , Patos , Vírus da Influenza A , Influenza Aviária , Animais , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Patos/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA