Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Plant Sci ; 15: 1387055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027673

RESUMO

The majority of cultivated bananas originated from inter- and intra(sub)specific crosses between two wild diploid species, Musa acuminata and Musa balbisiana. Hybridization and polyploidization events during the evolution of bananas led to the formation of clonally propagated cultivars characterized by a high level of genome heterozygosity and reduced fertility. The combination of low fertility in edible clones and differences in the chromosome structure among M. acuminata subspecies greatly hampers the breeding of improved banana cultivars. Using comparative oligo-painting, we investigated large chromosomal rearrangements in a set of wild M. acuminata subspecies and cultivars that originated from natural and human-made crosses. Additionally, we analyzed the chromosome structure of F1 progeny that resulted from crosses between Mchare bananas and the wild M. acuminata 'Calcutta 4' genotype. Analysis of chromosome structure within M. acuminata revealed the presence of a large number of chromosomal rearrangements showing a correlation with banana speciation. Chromosome painting of F1 hybrids was complemented by Illumina resequencing to identify the contribution of parental subgenomes to the diploid hybrid clones. The balanced presence of both parental genomes was revealed in all F1 hybrids, with the exception of one clone, which contained only Mchare-specific SNPs and thus most probably originated from an unreduced diploid gamete of Mchare.

2.
Cytogenet Genome Res ; 164(1): 43-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547850

RESUMO

INTRODUCTION: Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator. METHODS: Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization. RESULTS: The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions. CONCLUSION: Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.


Assuntos
Bandeamento Cromossômico , Variação Genética , Heterocromatina , Hibridização in Situ Fluorescente , Cariótipo , Telômero , Animais , Telômero/genética , Heterocromatina/genética , Passeriformes/genética , Cariotipagem , Masculino , RNA Ribossômico 18S/genética , Análise Citogenética , Sequências Repetitivas de Ácido Nucleico/genética , Feminino , DNA Ribossômico/genética , Citogenética/métodos
3.
Methods Mol Biol ; 2703: 237-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646950

RESUMO

This paper presents the latest update to the Plant rDNA database (Release 4.0), a valuable resource for researchers in the field of plant cytogenetics. The database provides information on the number, position, and arrangement of ribosomal DNA loci in plants, including angiosperms, gymnosperms, bryophytes, and pteridophytes. The new release includes new data for 820 species coming from additional 173 papers. In the updated version of the Plant rDNA database, 4948 entries comprising 2760 organisms can be found. A brief guide on how to navigate the database and obtain the desired information is also provided. The regular updating of the database is important for ensuring the information it contains is accurate, up-to-date, and useful for the research community. The Plant rDNA database continues to be beneficial for phylogenetic and cytogenetic studies in a wide range of taxa including angiosperms, gymnosperms, and early diverging groups, such as bryophytes and lycophytes.


Assuntos
Fonte de Informação , Magnoliopsida , DNA Ribossômico/genética , Filogenia , Ribossomos , DNA de Plantas/genética , Análise Citogenética
4.
Insects ; 13(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36555022

RESUMO

The study of the biological diversity of the Arctic zone yields intriguing results. Initial research on the lakes of the Yamal Peninsula resulted in the identification of Chironomus laetus and the hybrid Ch. laetus × Ch. sp. Le1. To avoid misidentification, we used morphological, cytogenetic, and molecular genetic approaches. By cytogenetics, in Ch. sp. Le1, seven banding sequences were found: Le1A1, Le1B1, Le1C1, Le1D1, Le1E1, Le1F1, and Le1G1. The karyotype of Ch. laetus was mapped for the first time; it is the first species with the arm combinations AE BC DF G. We propose the name of a new cytocomplex-"laetus". DNA-barcoding of the COI gene was carried out for Ch. laetus and Ch. laetus × Ch. sp. Le1 for the first time. The estimated genetic distance between the sequences of Ch. laetus and Ch. riihimakiensis is 2.3-2.5%. The high similarity in morphology, banding sequences, and the possibility of hybridization indicate a close relationship between Ch. laetus and Ch. sp. Le1, which is assumed to be the northern variant of Ch. riihimakiensis. Molecular genetic data suggests the presence of a subgroup with Ch. laetus.

5.
Animals (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230353

RESUMO

Pseudacanthicus is a genus of Neotropical fish with eight valid species, in addition to numerous lineages not formally identified. It occurs along the Amazon and Tocantins River basins, in Suriname and in the Guiana shield. There are no karyotypic data in the literature for species of this genus. Here, the karyotypes of three Pseudacanthicus species (P. spinosus, P. leopardus and Pseudacanthicus sp.) were comparatively analyzed by classical cytogenetics and fluorescence in situ hybridization using 18S and 5S rDNA probes, U2 snDNA and telomeric sequences. The analyzed species presented 52 chromosomes and KF = 18 m + 34 sm. Constitutive heterochromatin occurred in blocks on a few chromosomes. The 18S rDNA occurred in a single pair; interestingly, P. leopardus presented only one locus of this sequence in its diploid genome. The 5S rDNA sequence occurred in only one pair in P. leopardus, and in multiple sites in Pseudacanthicus sp. and P. spinosus. The snDNA U2 occurred in only one pair in all analyzed species. Telomeric sequences did not show interstitial sites. Although Pseudacanthicus species share the same 2n and KF, repetitive sequence analysis revealed karyotypic diversity among these species. The occurrence of DNA double-strand breaks related to fragile sites, unequal crossing over and transpositions is proposed as the mechanism of karyotypic diversification, suggesting that the conservation of the karyotypic macrostructure is only apparent in this group of fish.

6.
Cytogenet Genome Res ; 162(3): 148-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598601

RESUMO

Karyotypes of less than 10% of bird species are known. Using immunolocalization of the synaptonemal complex, the core structure of meiotic chromosomes at the pachytene stage, and centromere proteins, we describe male pachytene karyotypes of 17 species of birds. This method enables higher resolution than the conventional analyses of metaphase chromosomes. We provide the first descriptions of the karyotypes of 3 species (rook, Blyth's reed warbler, and European pied flycatcher), correct the published data on the karyotypes of 10 species, and confirm them for 4 species. All passerine species examined have highly conservative karyotypes, 2n = 80-82 with 7 pairs of macrochromosomes (including the ZZ sex chromosome pair which was not unambiguously distinguished from other macrochromosomes in most species) and 33-34 pairs of microchromosomes. In all of them, but not in the common cuckoo, we revealed single copies of the germline-restricted chromosomes varying in size and morphology even between closely related species. This indicates a fast evolution of this additional chromosome. The interspecies differences concern the sizes of the macrochromosomes, morphology of the microchromosomes, and sizes of the centromeres. The pachytene cells of the gouldian finch, brambling, and common linnet contain heteromorphic synaptonemal complexes indicating heterozygosity for inversions or centromere shifts. The European pied flycatcher, gouldian finch, and domestic canary have extended centromeres in several macro- and microchromosomes.


Assuntos
Centrômero , Cromossomos , Centrômero/genética , Cromossomos/genética , Células Germinativas , Humanos , Cariótipo , Cariotipagem , Masculino , Cromossomos Sexuais/genética
7.
Front Genet ; 13: 838462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401670

RESUMO

The Ancistrus genus has extensive chromosomal diversity among species, including heteromorphic sex chromosomes occurrence. However, studies have been shown that chromosomal diversity may still be underestimated. Repetitive sequences represent a large part of eukaryotic genomes, associated with mechanisms of karyotypic diversification, including sex chromosomes evolution. This study analyzed the karyotype diversification of two Ancistrus species (Ancistrus sp. 1 and Ancistrus sp. 2) from the Amazon region by classical and molecular chromosomal markers. Conventional chromosome bands and fluorescence in situ hybridization using probes 18S and 5S rDNA, besides (CA)n, (CG)n, (GA)n, (CAC)n, (CAG)n, (CAT)n, (GAA)n, (GAC)n, (TAA)n, and (TTAGGG)n in tandem repeats were determined on the karyotypes. Ancistrus sp. 1 and Ancistrus sp. 2 presented karyotypes with 2n = 38 (20 m + 14sm+4st, XX/XY) and 2n = 34 (20 m + 14sm, without heteromorphic sex chromosomes), respectively. Robertsonian rearrangements can explain the diploid number difference. C-bands occurred in pericentromeric regions in some chromosomes, and a single 18S rDNA locus occurred in both species. The 5S rDNA showed variation in the number of loci between species karyotypes, suggesting the occurrence of unstable sites and rearrangements associated with these sequences in Ancistrus. The microsatellite mapping evidenced distinct patterns of organization between the two analyzed species, occurring mainly in the sex chromosomes in Ancistrus sp. 1, and in the centromeric and pericentromeric regions of chromosomes m/sm in Ancistrus sp. 2. These data shows the extensive chromosomal diversity of repetitive sequences in Ancistrus, which were involved in Robertsonian rearrangements and sex chromosomes differentiation.

8.
Animals (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34573579

RESUMO

The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.

9.
Cytogenet Genome Res ; 161(3-4): 213-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34233333

RESUMO

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Assuntos
Cromossomos de Plantas/genética , Elymus/genética , Genoma de Planta/genética , Hibridização in Situ Fluorescente/métodos , Evolução Molecular , Marcadores Genéticos/genética , Cariótipo , Região Organizadora do Nucléolo/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Tetraploidia , Triticum/genética
10.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478071

RESUMO

The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.


Assuntos
DNA Satélite/genética , Cervos/genética , Filogenia , Animais , Células Cultivadas , Cervos/classificação , Fibroblastos , Marcadores Genéticos , Especiação Genética , Hibridização in Situ Fluorescente , Cultura Primária de Células , Pele/citologia
11.
Genes (Basel) ; 11(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172170

RESUMO

The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.


Assuntos
Cromossomos/genética , Enguias/genética , RNA Ribossômico 5S/genética , Animais , Mapeamento Cromossômico/métodos , Cor , Análise Citogenética/métodos , DNA Ribossômico/genética , Feminino , Fluorescência , Hibridização in Situ Fluorescente/métodos , Oceano Índico , Ilhas do Oceano Índico , Cariotipagem , Masculino , Filogenia , Especificidade da Espécie
12.
Cytogenet Genome Res ; 160(2): 85-93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32235117

RESUMO

From an economic point of view, Bovidae represent the most important family of the Ruminantia suborder. Thus, the mitochondrial and nuclear genomes of Bos taurus were among the first genomes to be sequenced after the sequencing of the human genomes. Over the millennia, the evolution of the genomes of the 3 main species belonging to the Bovidae family - B. taurus (BTA), Ovis aries (OAR), and Capra hircus (CHI) - has led to few chromosome rearrangements. Certainly, the availability and free access to the animal genomes significantly contributed to the improvement of animal genetics; however, some errors may exist due to the high automation in the genomic assembly construction process. In this work, some differences between the genomes of cattle, goat, and sheep highlighted by bioinformatics analysis have been verified by FISH, confirming that some errors persist even in the most recent genome assemblies. This type of approach has allowed us to detect a misassembly of a region belonging to BTA16 and to the homologues OAR12 and CHI16, a misassembly of a short tract in BTA22, OAR19, and CHI22, an incorrect mapping of a region of BTA21 and of CHI27 and OAR26, a discrepancy in the BTA26, OAR22, and CHI26 assemblies, a missed inversion in CHI1 compared to BTA1 and OAR1, and the exact assembly of a region of about 7 Mb in OAR10 and CHI12. Incorrect positioning of genomic tracts can cause unintended consequences in genetic analyses, especially when the data represent a starting point for the construction of genetic tools. In the new genomic assemblies published after the conclusion of our experiments, however, the accuracy in the construction of animal assemblies has been much improved, even if the new assemblies present more extended unmapped portions than the previous versions. The gap could be filled by comparative analyses between similar species or FISH.


Assuntos
Bovinos/genética , Cromossomos de Mamíferos/genética , Biologia Computacional/métodos , Cabras/genética , Ovinos/genética , Animais , Mapeamento de Sequências Contíguas , Evolução Molecular , Variação Genética , Genômica , Hibridização in Situ Fluorescente
13.
Genes (Basel) ; 11(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235544

RESUMO

The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.


Assuntos
Arvicolinae/genética , Evolução Molecular , Marcadores Genéticos , Polimorfismo Genético , Cromossomos Sexuais/genética , Animais , Arvicolinae/classificação , Feminino , Genética Populacional , Masculino , Processos de Determinação Sexual
14.
Eur J Protistol ; 74: 125691, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200034

RESUMO

We performed karyotyping of Amoeba sp. strain Cont. Based on the results of a cytological analysis, we concluded that the chromosome number of Amoeba sp. strain Cont in mitosis was unstable. In all cases they appeared to be hypergaploid (the basic chromosome number is 30), with monosomy of all chromosomes except four shortest ones. The presence of "extrachromosomes" in the nucleus could prolong until the beginning of the anaphase. It was only then that they were ejected from the nucleus and the euploidy (haploidy) was restored. The stage of endoprophase nucleus was revealed in the cell cycle of Amoeba sp. strain Cont. This stage has not yet been found in other amoebae from the "proteus-type" group that had been previously studied (A. proteus strain B and A. borokensis). The maximum number of endoreplication rounds in the strain Cont amoebae nuclear cycle was 4 or 5. The regular extrusion of chromosomes from the nucleus into the cytoplasm occurred in each of the endoreplication rounds. Comparative cytological analysis of A. proteus strain B, A. borokensis and Amoeba sp. strain Cont karyotypes indicated that strain Cont, though rather close to the former two amoebae, is actually a distinct species.


Assuntos
Amoeba/citologia , Amoeba/genética , Instabilidade Cromossômica/genética , Cariótipo , Mitose/genética , Especificidade da Espécie
15.
Front Zool ; 14: 47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046707

RESUMO

BACKGROUND: The maintenance of species and the promotion of speciation are closely related to chromosomal rearrangements throughout evolution. Decapoda represents the most species-rich order among crustaceans and, despite its ecological and economic importance, little is known about decapod karyology. We aim at cytogenetically characterizing two sympatric prawn species. RESULTS: Analysis of mitotic metaphases and meiotic diakinesis of the common prawn Palaemon serratus and the rockpool prawn P. elegans, revealed considerable differences between their karyotypes including chromosome numbers and sex determination systems. The cytogenetic data for P. serratus showed a diploid number of 56 and the putative absence of heteromorphic sex chromosomes. However, the diploid chromosome number in P. elegans was 90 for females and 89 for males. The karyotype of the females consisted of the three largest acrocentric pairs and 42 submetacentric and metacentric pairs, while the karyotype of the males comprised a clearly identifiable large metacentric chromosome and two acrocentric pairs as well as the smaller 42 pairs. These results highlight the presence of the X1X1X2X2/X1X2Y multiple sex chromosome system in P. elegans, which constitute the only sexual system for Decapoda reported cytogenetically using modern techniques. The origin of this sex chromosome system is discussed. We hypothesize that the chromosome evolution within the genus could involve several fusion events giving rise to a reduction on the chromosome number in P. serratus. In both species, the major ribosomal genes were located in two chromosome pairs and hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes. C-banding revealed that, when present, constitutive heterochromatin had a predominantly telomeric distribution and no centromeric constitutive heterochromatin was observed. CONCLUSIONS: Although more comparative cytogenetic analyses are needed to clarify our hypotheses, the findings of this work indicate that the prawns of the genus Palaemon represent a promising model among Decapoda representatives to investigate the karyotype evolution and the patterns of sex chromosome differentiation.

16.
Comp Cytogenet ; 11(2): 267-283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919964

RESUMO

According to the recent taxonomic and phylogenetic revision of the family Hylidae, species of the former Scinax catharinae (Boulenger, 1888) clade were included in the resurrected genus Ololygon Fitzinger, 1843, while species of the Scinax ruber (Laurenti, 1768) clade were mostly included in the genus Scinax Wagler, 1830, and two were allocated to the newly created genus Julianus Duellman et al., 2016. Although all the species of the former Scinax genus shared a diploid number of 2n = 24 and the same fundamental number of chromosome arms of FN = 48, two karyotypic constitutions were unequivocally recognized, related mainly to the distinct size and morphology of the first two chromosome pairs. Some possible mechanisms for these differences had been suggested, but without any experimental evidence. In this paper, a comparison was carried out based on replication chromosome banding, obtained after DNA incorporation of 5-bromodeoxiuridine in chromosomes of Ololygon and Scinax. The obtained results revealed that the loss of repetitive segments in chromosome pairs 1 and 2 was the mechanism responsible for karyotype difference. The distinct localization of the nucleolus organizer regions in the species of both genera also differentiates the two karyotypic constitutions.

17.
Genes (Basel) ; 8(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867774

RESUMO

It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected.

18.
Chromosome Res ; 24(2): 145-59, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26611440

RESUMO

The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.


Assuntos
Arvicolinae/genética , Mapeamento Cromossômico/métodos , Coloração Cromossômica/métodos , Mesocricetus/genética , Sintenia/genética , Animais , Evolução Biológica , Linhagem Celular , Aberrações Cromossômicas , Bandeamento Cromossômico , Cricetinae , Marcadores Genéticos/genética , Cariótipo , Filogenia , Cromossomos Sexuais/genética
19.
Comp Cytogenet ; 8(4): 301-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610544

RESUMO

Conventional (Giemsa, C-banding, Ag - NORs) and molecular [5S rDNA, 18S rDNA, (TTAGGG)n] cytogenetic techniques were employed to study six species of the genus Eigenmannia Jordan & Evermann, 1896. They exhibited diploid chromosome numbers ranging from 2n=28 (Eigenmannia sp.1) to 2n=38 (Eigenmanniavirescens (Valenciennes, 1836)). The C-banding results revealed that species with the lowest 2n have less heterochromatin content and that morphologically differentiated sex chromosomes observed in two species showed distinct patterns of heterochromatin. While the X1, X2 and Y-chromosomes of Eigenmannia sp.2 showed only centromeric heterochromatin, the XY sex chromosomes of Eigenmanniavirescens possessed large heterochromatic blocks in the terminal position, particularly on the X chromosome. The nucleolus organizer regions (NORs) were located in different positions when compared to the 5S rDNA sites. Additionally, the presence of minor ribosomal gene sites on the sex chromosome pair of Eigenmanniavirescens represented a new type of the sex chromosomes in this group. The telomeric probe (TTAGGG)n hybridized to the terminal portion of all chromosomes in all species examined however, interstitial telomeric sites were found in the metacentric pair No. 2 in Eigenmannia sp.1. The analyzes confirmed some hypotheses about karyotype evolution in the genus Eigenmannia, and brought new information about the distribution of the genetic material in the chromosomes of the samples analyzed providing new insights for understanding the process differentiation in the genomes of species under study.

20.
Comp Cytogenet ; 8(4): 337-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610547

RESUMO

Until now, basic karyological parameters have been used in different ways by researchers to infer karyological relationships among organisms. In the present study, we propose a standardized approach to this aim, integrating six different, not redundant, parameters in a multivariate PCoA analysis. These parameters are chromosome number, basic chromosome number, total haploid chromosome length, MCA (Mean Centromeric Asymmetry), CVCL (Coefficient of Variation of Chromosome Length) and CVCI (Coefficient of Variation of Centromeric Index). The method is exemplified with the application to several plant taxa, and its significance and limits are discussed in the light of current phylogenetic knowledge of these groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA