Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol Inform ; 15: 100380, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827567

RESUMO

Background: Endometrial CD138+ plasma cells serve as a diagnostic biomarker for endometrial inflammation, and their elevated occurrence correlates positively with adverse pregnancy outcomes. Infertility-related conditions like polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF) are closely associated with systemic and local chronic inflammatory status, wherein endometrial CD138+ plasma cell accumulation could also contribute to endometrial pathology. Current methods for quantifying CD138+ cells typically involve laborious and time-consuming microscopic assessments of only a few random areas from a slide. These methods have limitations in accurately representing the entire slide and are susceptible to significant biases arising from intra- and interobserver variations. Implementing artificial intelligence (AI) for CD138+ cell identification could enhance the accuracy, reproducibility, and reliability of analysis. Methods: Here, an AI algorithm was developed to identify CD138+ plasma cells within endometrial tissue. The AI model comprised two layers of convolutional neural networks (CNNs). CNN1 was trained to segment epithelium and stroma across 28,363 mm2 (2.56 mm2 of epithelium and 24.87 mm2 of stroma), while CNN2 was trained to distinguish stromal cells based on CD138 staining, encompassing 7345 cells in the object layers (6942 CD138- cells and 403 CD138+ cells). The training and performance of the AI model were validated by three experienced pathologists. We collected 193 endometrial tissues from healthy controls (n = 73), women with PCOS (n = 91), and RIF patients (n = 29) and compared the CD138+ cell percentages based on cycle phases, ovulation status, and endometrial receptivity utilizing the AI model. Results: The AI algorithm consistently and reliably distinguished CD138- and CD138+ cells, with total error rates of 6.32% and 3.23%, respectively. During the training validation, there was a complete agreement between the decisions made by the pathologists and the AI algorithm, while the performance validation demonstrated excellent accuracy between the AI and human evaluation methods (intraclass correlation; 0.76, 95% confidence intervals; 0.36-0.93, p = 0.002) and a positive correlation (Spearman's rank correlation coefficient: 0.79, p < 0.01). In the AI analysis, the AI model revealed higher CD138+ cell percentages in the proliferative phase (PE) endometrium compared to the secretory phase or anovulatory PCOS endometrium, irrespective of PCOS diagnosis. Interestingly, CD138+ percentages differed according to PCOS phenotype in the PE (p = 0.03). On the other hand, the receptivity status had no impact on the cell percentages in RIF samples. Conclusion: Our findings emphasize the potential and accuracy of the AI algorithm in detecting endometrial CD138+ plasma cells, offering distinct advantages over manual inspection, such as rapid analysis of whole slide images, reduction of intra- and interobserver variations, sparing the valuable time of trained specialists, and consistent productivity. This supports the application of AI technology to help clinical decision-making, for example, in understanding endometrial cycle phase-related dynamics, as well as different reproductive disorders.

2.
J Pathol Inform ; 15: 100364, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38445292

RESUMO

Background: The human endometrium undergoes a monthly cycle of tissue growth and degeneration. During the mid-secretory phase, the endometrium establishes an optimal niche for embryo implantation by regulating cellular composition (e.g., epithelial and stromal cells) and differentiation. Impaired endometrial development observed in conditions such as polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF) contributes to infertility. Surprisingly, despite the importance of the endometrial lining properly developing prior to pregnancy, precise measures of endometrial cellular composition in these two infertility-associated conditions are entirely lacking. Additionally, current methods for measuring the epithelial and stromal area have limitations, including intra- and inter-observer variability and efficiency. Methods: We utilized a deep-learning artificial intelligence (AI) model, created on a cloud-based platform and developed in our previous study. The AI model underwent training to segment both areas populated by epithelial and stromal endometrial cells. During the training step, a total of 28.36 mm2 areas were annotated, comprising 2.56 mm2 of epithelium and 24.87 mm2 of stroma. Two experienced pathologists validated the performance of the AI model. 73 endometrial samples from healthy control women were included in the sample set to establish cycle phase-dependent dynamics of the endometrial epithelial-to-stroma ratio from the proliferative (PE) to secretory (SE) phases. In addition, 91 samples from PCOS cases, accounting for the presence or absence of ovulation and representing all menstrual cycle phases, and 29 samples from RIF patients on day 5 after progesterone administration in the hormone replacement treatment cycle were also included and analyzed in terms of cellular composition. Results: Our AI model exhibited reliable and reproducible performance in delineating epithelial and stromal compartments, achieving an accuracy of 92.40% and 99.23%, respectively. Moreover, the performance of the AI model was comparable to the pathologists' assessment, with F1 scores exceeding 82% for the epithelium and >96% for the stroma. Next, we compared the endometrial epithelial-to-stromal ratio during the menstrual cycle in women with PCOS and in relation to endometrial receptivity status in RIF patients. The ovulatory PCOS endometrium exhibited epithelial cell proportions similar to those of control and healthy women's samples in every cycle phase, from the PE to the late SE, correlating with progesterone levels (control SE, r2 = 0.64, FDR < 0.001; PCOS SE, r2 = 0.52, FDR < 0.001). The mid-SE endometrium showed the highest epithelial percentage compared to both the early and late SE endometrium in both healthy women and PCOS patients. Anovulatory PCOS cases showed epithelial cellular fractions comparable to those of PCOS cases in the PE (Anovulatory, 14.54%; PCOS PE, 15.56%, p = 1.00). We did not observe significant differences in the epithelial-to-stroma ratio in the hormone-induced endometrium in RIF patients with different receptivity statuses. Conclusion: The AI model rapidly and accurately identifies endometrial histology features by calculating areas occupied by epithelial and stromal cells. The AI model demonstrates changes in epithelial cellular proportions according to the menstrual cycle phase and reveals no changes in epithelial cellular proportions based on PCOS and RIF conditions. In conclusion, the AI model can potentially improve endometrial histology assessment by accelerating the analysis of the cellular composition of the tissue and by ensuring maximal objectivity for research and clinical purposes.

3.
Lab Invest ; 103(5): 100070, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801642

RESUMO

Tissue structures, phenotypes, and pathology are routinely investigated based on histology. This includes chemically staining the transparent tissue sections to make them visible to the human eye. Although chemical staining is fast and routine, it permanently alters the tissue and often consumes hazardous reagents. On the other hand, on using adjacent tissue sections for combined measurements, the cell-wise resolution is lost owing to sections representing different parts of the tissue. Hence, techniques providing visual information of the basic tissue structure enabling additional measurements from the exact same tissue section are required. Here we tested unstained tissue imaging for the development of computational hematoxylin and eosin (HE) staining. We used unsupervised deep learning (CycleGAN) and whole slide images of prostate tissue sections to compare the performance of imaging tissue in paraffin, as deparaffinized in air, and as deparaffinized in mounting medium with section thicknesses varying between 3 and 20 µm. We showed that although thicker sections increase the information content of tissue structures in the images, thinner sections generally perform better in providing information that can be reproduced in virtual staining. According to our results, tissue imaged in paraffin and as deparaffinized provides a good overall representation of the tissue for virtually HE-stained images. Further, using a pix2pix model, we showed that the reproduction of overall tissue histology can be clearly improved with image-to-image translation using supervised learning and pixel-wise ground truth. We also showed that virtual HE staining can be used for various tissues and used with both 20× and 40× imaging magnifications. Although the performance and methods of virtual staining need further development, our study provides evidence of the feasibility of whole slide unstained microscopy as a fast, cheap, and feasible approach to producing virtual staining of tissue histology while sparing the exact same tissue section ready for subsequent utilization with follow-up methods at single-cell resolution.


Assuntos
Microscopia , Parafina , Masculino , Humanos , Hematoxilina , Amarelo de Eosina-(YS) , Microscopia/métodos , Coloração e Rotulagem
4.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850461

RESUMO

Hyperspectral Imaging (HSI) is increasingly adopted in medical applications for the usefulness of understanding the spectral signature of specific organic and non-organic elements. The acquisition of such images is a complex task, and the commercial sensors that can measure such images is scarce down to the point that some of them have limited spatial resolution in the bands of interest. This work proposes an approach to enhance the spatial resolution of hyperspectral histology samples using super-resolution. As the data volume associated to HSI has always been an inconvenience for the image processing in practical terms, this work proposes a relatively low computationally intensive algorithm. Using multiple images of the same scene taken in a controlled environment (hyperspectral microscopic system) with sub-pixel shifts between them, the proposed algorithm can effectively enhance the spatial resolution of the sensor while maintaining the spectral signature of the pixels, competing in performance with other state-of-the-art super-resolution techniques, and paving the way towards its use in real-time applications.


Assuntos
Algoritmos , Ambiente Controlado , Técnicas Histológicas , Imageamento Hiperespectral , Processamento de Imagem Assistida por Computador
5.
PNAS Nexus ; 1(5): pgac235, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712353

RESUMO

Convolutional neural networks (CNNs) and other deep-learning models have proven to be transformative tools for the automated analysis of microscopy images, particularly in the domain of cellular and tissue imaging. These computer-vision models have primarily been applied with traditional microscopy imaging modalities (e.g. brightfield and fluorescence), likely due to the availability of large datasets in these regimes. However, more advanced microscopy imaging techniques could, potentially, allow for improved model performance in various computational histopathology tasks. In this work, we demonstrate that CNNs can achieve high accuracy in cell detection and classification without large amounts of data when applied to histology images acquired by fluorescence lifetime imaging microscopy (FLIM). This accuracy is higher than what would be achieved with regular single or dual-channel fluorescence images under the same settings, particularly for CNNs pretrained on publicly available fluorescent cell or general image datasets. Additionally, generated FLIM images could be predicted from just the fluorescence image data by using a dense U-Net CNN model trained on a subset of ground-truth FLIM images. These U-Net CNN generated FLIM images demonstrated high similarity to ground truth and improved accuracy in cell detection and classification over fluorescence alone when used as input to a variety of commonly used CNNs. This improved accuracy was maintained even when the FLIM images were generated by a U-Net CNN trained on only a few example FLIM images.

6.
J Pathol ; 244(5): 512-524, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288495

RESUMO

The Cancer Genome Atlas (TCGA) represents one of several international consortia dedicated to performing comprehensive genomic and epigenomic analyses of selected tumour types to advance our understanding of disease and provide an open-access resource for worldwide cancer research. Thirty-three tumour types (selected by histology or tissue of origin, to include both common and rare diseases), comprising >11 000 specimens, were subjected to DNA sequencing, copy number and methylation analysis, and transcriptomic, proteomic and histological evaluation. Each cancer type was analysed individually to identify tissue-specific alterations, and make correlations across different molecular platforms. The final dataset was then normalized and combined for the PanCancer Initiative, which seeks to identify commonalities across different cancer types or cells of origin/lineage, or within anatomically or morphologically related groups. An important resource generated along with the rich molecular studies is an extensive digital pathology slide archive, composed of frozen section tissue directly related to the tissues analysed as part of TCGA, and representative formalin-fixed paraffin-embedded, haematoxylin and eosin (H&E)-stained diagnostic slides. These H&E image resources have primarily been used to verify diagnoses and histological subtypes with some limited extraction of standard pathological variables such as mitotic activity, grade, and lymphocytic infiltrates. Largely overlooked is the richness of these scanned images for more sophisticated feature extraction approaches coupled with machine learning, and ultimately correlation with molecular features and clinical endpoints. Here, we document initial attempts to exploit TCGA imaging archives, and describe some of the tools, and the rapidly evolving image analysis/feature extraction landscape. Our hope is to inform, and ultimately inspire and challenge, the pathology and cancer research communities to exploit these imaging resources so that the full potential of this integral platform of TCGA can be used to complement and enhance the insightful integrated analyses from the genomic and epigenomic platforms. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Genômica/métodos , Neoplasias/genética , Neoplasias/patologia , Patologia Molecular/métodos , Bases de Dados Genéticas , Epigênese Genética , Predisposição Genética para Doença , Genoma Humano , Humanos , Interpretação de Imagem Assistida por Computador , Neoplasias/terapia , Fenótipo , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA