Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 919, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390613

RESUMO

BACKGROUND: Propagation of neuronal α-synuclein aggregate pathology to the cortex and hippocampus correlates with cognitive impairment in Parkinson's disease (PD) dementia and dementia with Lewy body disease. Previously, we showed accumulation of the parkin substrate aminoacyl-tRNA synthetase interacting multifunctional protein-2 (AIMP2) in the temporal lobe of postmortem brains of patients with advanced PD. However, the potential pathological role of AIMP2 accumulation in the cognitive dysfunction of patients with PD remains unknown. METHODS: We performed immunofluorescence imaging to examine cellular distribution and accumulation of AIMP2 in brains of conditional AIMP2 transgenic mice and postmortem PD patients. The pathological role of AIMP2 was investigated in the AIMP2 transgenic mice by assessing Nissl-stained neuron counting in the hippocampal area and Barnes maze to determine cognitive functions. Potential secretion and cellular uptake of AIMP2 was monitored by dot blot analysis and immunofluorescence. The utility of AIMP2 as a new PD biomarker was evaluated by dot blot and ELISA measurement of plasma AIMP2 collected from PD patients and healthy control followed by ROC curve analysis. RESULTS: We demonstrated that AIMP2 is toxic to the dentate gyrus neurons of the hippocampus and that conditional AIMP2 transgenic mice develop progressive cognitive impairment. Moreover, we found that neuronal AIMP2 expression levels correlated with the brain endothelial expression of AIMP2 in both AIMP2 transgenic mice and in the postmortem brains of patients with PD. AIMP2, when accumulated, was released from the neuronal cell line SH-SY5Y cells. Secreted AIMP2 was taken up by human umbilical vein endothelial cells. Consistent with the fact that AIMP2 can be released into the extracellular space, we showed that AIMP2 transgenic mice have higher levels of plasma AIMP2. Finally, ELISA-based assessment of AIMP2 in plasma samples from patients with PD and controls, and subsequent ROC curve analysis proved that high plasma AIMP2 expression could serve as a reliable molecular biomarker for PD diagnosis. CONCLUSIONS: The pathological role in the hippocampus and the cell-to-cell transmissibility of AIMP2 provide new therapeutic avenues for PD treatment, and plasma AIMP2 combined with α-synuclein may improve the accuracy of PD diagnosis in the early stages.


Assuntos
Encéfalo , Camundongos Transgênicos , Doença de Parkinson , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo
2.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132100

RESUMO

CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Camundongos , Animais , Herpesvirus Humano 4/fisiologia , Linfócitos B/patologia , Centro Germinativo , Infecções por Herpesviridae/patologia , Modelos Animais de Doenças
3.
Schizophr Bull ; 47(5): 1409-1420, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33871014

RESUMO

The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.


Assuntos
Encéfalo , Endofenótipos , Ácido Glutâmico/metabolismo , Rede Nervosa , Neuregulina-1/metabolismo , Agitação Psicomotora , Receptor ErbB-4/metabolismo , Esquizofrenia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Agitação Psicomotora/metabolismo , Agitação Psicomotora/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transdução de Sinais/fisiologia
4.
Oncotarget ; 8(35): 58872-58886, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938604

RESUMO

The PIM family of Ser/Thr kinase proteins has been implicated in tumorigenesis at different levels. PIM proteins are overexpressed in several tumor types and have been associated with chemoresistance. However, their role in hormone-dependent female tissues has not been explored, especially in the uterus, breast and ovary. We generated conditional transgenic mice with confined expression of human PIM1 or PIM2 genes in these tissues. We characterized the tumoral response to these genetic alterations corroborating their role as oncogenes since they induce hyperproliferation in all tissues and tumors in mammary gland and uterus. Furthermore, we observed a high degree of inflammatory infiltration in these tissues of transgenic mice accompanied by NFAT and mTOR activation and IL6 expression. Moreover, PIM1/2 were overexpressed in human breast, uterine and ovarian tumors, correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression provoke tissue alterations and a large IL6-dependent inflammatory response that may act synergistically during the process of tumorigenesis. The possible end-point is an increased percentage of cancer stem cells, which may be partly responsible for the therapy resistance found in tumors overexpressing PIM kinases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA