Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Heliyon ; 10(9): e30643, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774068

RESUMO

Trypanosomiasis, a significant health concern in South America, South Asia, and Southeast Asia, requires active surveys to effectively control the disease. To address this, we have developed a hybrid model that combines deep metric learning (DML) and image retrieval. This model is proficient at identifying Trypanosoma species in microscopic images of thin-blood film examinations. Utilizing the ResNet50 backbone neural network, a trained-model has demonstrated outstanding performance, achieving an accuracy exceeding 99.71 % and up to 96 % in recall. Acknowledging the necessity for automated tools in field scenarios, we demonstrated the potential of our model as an autonomous screening approach. This was achieved by using prevailing convolutional neural network (CNN) applications, and vector database based-images returned by the KNN algorithm. This achievement is primarily attributed to the implementation of the Triplet Margin Loss function as 98 % of precision. The robustness of the model demonstrated in five-fold cross-validation highlights the ResNet50 neural network, based on DML, as a state-of-the-art CNN model as AUC >98 %. The adoption of DML significantly improves the performance of the model, remaining unaffected by variations in the dataset and rendering it a useful tool for fieldwork studies. DML offers several advantages over conventional classification model to manage large-scale datasets with a high volume of classes, enhancing scalability. The model has the capacity to generalize to novel classes that were not encountered during training, proving particularly advantageous in scenarios where new classes may consistently emerge. It is also well suited for applications requiring precise recognition, especially in discriminating between closely related classes. Furthermore, the DML exhibits greater resilience to issues related to class imbalance, as it concentrates on learning distances or similarities, which are more tolerant to such imbalances. These contributions significantly make the effectiveness and practicality of DML model, particularly in in fieldwork research.

2.
Network ; : 1-31, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708841

RESUMO

In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.

3.
Comput Methods Programs Biomed ; 253: 108228, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810378

RESUMO

BACKGROUND AND OBJECTIVE: Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. A key distinction from previous models lies in its ability to produce enriched image descriptors solely from binary information, eliminating the need for costly and difficult to obtain tumor segmentation. METHODS: The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. This generalization makes possible for future research in different medical diagnosis areas with almost not any change in the system. RESULTS: We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain Magnetic Resonances (MRs), achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. Our findings highlight the significant potential for improving the efficiency and accuracy of comparative diagnostics and the treatment of tumoral pathologies. CONCLUSIONS: This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Sistemas de Apoio a Decisões Clínicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Algoritmos , Bases de Dados Factuais
4.
Artigo em Inglês | MEDLINE | ID: mdl-38616847

RESUMO

The world health organization's global tuberculosis (TB) report for 2022 identifies TB, with an estimated 1.6 million, as a leading cause of death. The number of new cases has risen since 2020, particularly the number of new drug-resistant cases, estimated at 450,000 in 2021. This is concerning, as treatment of patients with drug resistant TB is complex and may not always be successful. The NIAID TB Portals program is an international consortium with a primary focus on patient centric data collection and analysis for drug resistant TB. The data includes images, their associated radiological findings, clinical records, and socioeconomic information. This work describes a TB Portals' Chest X-ray based image retrieval system which enables precision medicine. An input image is used to retrieve similar images and the associated patient specific information, thus facilitating inspection of outcomes and treatment regimens from comparable patients. Image similarity is defined using clinically relevant biomarkers: gender, age, body mass index (BMI), and the percentage of lung affected per sextant. The biomarkers are predicted using variations of the DenseNet169 convolutional neural network. A multi-task approach is used to predict gender, age and BMI incorporating transfer learning from an initial training on the NIH Clinical Center CXR dataset to the TB portals dataset. The resulting gender AUC, age and BMI mean absolute errors were 0.9854, 4.03years and 1.67kgm2. For the percentage of sextant affected by lesions the mean absolute errors ranged between 7% to 12% with higher error values in the middle and upper sextants which exhibit more variability than the lower sextants. The retrieval system is currently available from https://rap.tbportals.niaid.nih.gov/find_similar_cxr.

5.
Sci Rep ; 14(1): 4587, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403628

RESUMO

The aim of our study was to assess the performance of content-based image retrieval (CBIR) for similar chest computed tomography (CT) in obstructive lung disease. This retrospective study included patients with obstructive lung disease who underwent volumetric chest CT scans. The CBIR database included 600 chest CT scans from 541 patients. To assess the system performance, follow-up chest CT scans of 50 patients were evaluated as query cases, which showed the stability of the CT findings between baseline and follow-up chest CT, as confirmed by thoracic radiologists. The CBIR system retrieved the top five similar CT scans for each query case from the database by quantifying and comparing emphysema extent and size, airway wall thickness, and peripheral pulmonary vasculatures in descending order from the database. The rates of retrieval of the same pairs of query CT scans in the top 1-5 retrievals were assessed. Two expert chest radiologists evaluated the visual similarities between the query and retrieved CT scans using a five-point scale grading system. The rates of retrieving the same pairs of query CTs were 60.0% (30/50) and 68.0% (34/50) for top-three and top-five retrievals. Radiologists rated 64.8% (95% confidence interval 58.8-70.4) of the retrieved CT scans with a visual similarity score of four or five and at least one case scored five points in 74% (74/100) of all query cases. The proposed CBIR system for obstructive lung disease integrating quantitative CT measures demonstrated potential for retrieving chest CT scans with similar imaging phenotypes. Further refinement and validation in this field would be valuable.


Assuntos
Enfisema Pulmonar , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico , Radiologistas
6.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232396

RESUMO

Objective.Recognizing the most relevant seven organs in an abdominal computed tomography (CT) slice requires sophisticated knowledge. This study proposed automatically extracting relevant features and applying them in a content-based image retrieval (CBIR) system to provide similar evidence for clinical use.Approach.A total of 2827 abdominal CT slices, including 638 liver, 450 stomach, 229 pancreas, 442 spleen, 362 right kidney, 424 left kidney and 282 gallbladder tissues, were collected to evaluate the proposed CBIR in the present study. Upon fine-tuning, high-level features used to automatically interpret the differences among the seven organs were extracted via deep learning architectures, including DenseNet, Vision Transformer (ViT), and Swin Transformer v2 (SwinViT). Three images with different annotations were employed in the classification and query.Main results.The resulting performances included the classification accuracy (94%-99%) and retrieval result (0.98-0.99). Considering global features and multiple resolutions, SwinViT performed better than ViT. ViT also benefited from a better receptive field to outperform DenseNet. Additionally, the use of hole images can obtain almost perfect results regardless of which deep learning architectures are used.Significance.The experiment showed that using pretrained deep learning architectures and fine-tuning with enough data can achieve successful recognition of seven abdominal organs. The CBIR system can provide more convincing evidence for recognizing abdominal organs via similarity measurements, which could lead to additional possibilities in clinical practice.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem , Fígado , Pulmão
7.
Med Image Anal ; 92: 103060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104401

RESUMO

The volume of medical images stored in hospitals is rapidly increasing; however, the utilization of these accumulated medical images remains limited. Existing content-based medical image retrieval (CBMIR) systems typically require example images, leading to practical limitations, such as the lack of customizable, fine-grained image retrieval, the inability to search without example images, and difficulty in retrieving rare cases. In this paper, we introduce a sketch-based medical image retrieval (SBMIR) system that enables users to find images of interest without the need for example images. The key concept is feature decomposition of medical images, which allows the entire feature of a medical image to be decomposed into and reconstructed from normal and abnormal features. Building on this concept, our SBMIR system provides an easy-to-use two-step graphical user interface: users first select a template image to specify a normal feature and then draw a semantic sketch of the disease on the template image to represent an abnormal feature. The system integrates both types of input to construct a query vector and retrieves reference images. For evaluation, ten healthcare professionals participated in a user test using two datasets. Consequently, our SBMIR system enabled users to overcome previous challenges, including image retrieval based on fine-grained image characteristics, image retrieval without example images, and image retrieval for rare cases. Our SBMIR system provides on-demand, customizable medical image retrieval, thereby expanding the utility of medical image databases.


Assuntos
Algoritmos , Semântica , Humanos , Armazenamento e Recuperação da Informação , Bases de Dados Factuais
8.
Knowl Based Syst ; 2782023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37780058

RESUMO

Nearest neighbor search, also known as NNS, is a technique used to locate the points in a high-dimensional space closest to a given query point. This technique has multiple applications in medicine, such as searching large medical imaging databases, disease classification, and diagnosis. However, when the number of points is significantly large, the brute-force approach for finding the nearest neighbor becomes computationally infeasible. Therefore, various approaches have been developed to make the search faster and more efficient to support the applications. With a focus on medical imaging, this paper proposes DenseLinkSearch (DLS), an effective and efficient algorithm that searches and retrieves the relevant images from heterogeneous sources of medical images. Towards this, given a medical database, the proposed algorithm builds an index that consists of pre-computed links of each point in the database. The search algorithm utilizes the index to efficiently traverse the database in search of the nearest neighbor. We also explore the role of medical image feature representation in content-based medical image retrieval tasks. We propose a Transformer-based feature representation technique that outperformed the existing pre-trained Transformer-based approaches on benchmark medical image retrieval datasets. We extensively tested the proposed NNS approach and compared the performance with state-of-the-art NNS approaches on benchmark datasets and our created medical image datasets. The proposed approach outperformed the existing approaches in terms of retrieving accurate neighbors and retrieval speed. In comparison to the existing approximate NNS approaches, our proposed DLS approach outperformed them in terms of lower average time per query and ≥ 99% R@10 on 11 out of 13 benchmark datasets. We also found that the proposed medical feature representation approach is better for representing medical images compared to the existing pre-trained image models. The proposed feature extraction strategy obtained an improvement of 9.37%, 7.0%, and 13.33% in terms of P@5, P@10, and P@20, respectively, in comparison to the best-performing pre-trained image model. The source code and datasets of our experiments are available at https://github.com/deepaknlp/DLS.

9.
J Digit Imaging ; 36(5): 2194-2209, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37296349

RESUMO

Pathological Anatomy is moving toward computerizing processes mainly due to the extensive digitization of histology slides that resulted in the availability of many Whole Slide Images (WSIs). Their use is essential, especially in cancer diagnosis and research, and raises the pressing need for increasingly influential information archiving and retrieval systems. Picture Archiving and Communication Systems (PACSs) represent an actual possibility to archive and organize this growing amount of data. The design and implementation of a robust and accurate methodology for querying them in the pathology domain using a novel approach are mandatory. In particular, the Content-Based Image Retrieval (CBIR) methodology can be involved in the PACSs using a query-by-example task. In this context, one of many crucial points of CBIR concerns the representation of images as feature vectors, and the accuracy of retrieval mainly depends on feature extraction. Thus, our study explored different representations of WSI patches by features extracted from pre-trained Convolution Neural Networks (CNNs). In order to perform a helpful comparison, we evaluated features extracted from different layers of state-of-the-art CNNs using different dimensionality reduction techniques. Furthermore, we provided a qualitative analysis of obtained results. The evaluation showed encouraging results for our proposed framework.


Assuntos
Armazenamento e Recuperação da Informação , Sistemas de Informação em Radiologia , Humanos , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Técnicas Histológicas
10.
Neural Netw ; 164: 245-263, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37163844

RESUMO

Content-based image retrieval (CBIR) aims to provide the most similar images to a given query. Feature extraction plays an essential role in retrieval performance within a CBIR pipeline. Current CBIR studies would either uniformly extract feature information from the input image and use it directly or employ some trainable spatial weighting module which is then used for similarity comparison between pairs of query and candidate matching images. These spatial weighting modules are normally query non-sensitive and only based on the knowledge learned during the training stage. They may focus towards incorrect regions, especially when the target image is not salient or is surrounded by distractors. This paper proposes an efficient query sensitive co-attention1 mechanism for large-scale CBIR tasks. In order to reduce the extra computation cost required by the query sensitivity to the co-attention mechanism, the proposed method employs clustering of the selected local features. Experimental results indicate that the co-attention maps can provide the best retrieval results on benchmark datasets under challenging situations, such as having completely different image acquisition conditions between the query and its match image.


Assuntos
Armazenamento e Recuperação da Informação , Reconhecimento Automatizado de Padrão , Reconhecimento Automatizado de Padrão/métodos , Diagnóstico por Imagem , Aprendizagem , Análise por Conglomerados
11.
Comput Med Imaging Graph ; 107: 102239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207397

RESUMO

Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Fígado/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos
12.
Phys Med Biol ; 68(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37068492

RESUMO

Objective.In this work, we propose a content-based image retrieval (CBIR) method for retrieving dose distributions of previously planned patients based on anatomical similarity. Retrieved dose distributions from this method can be incorporated into automated treatment planning workflows in order to streamline the iterative planning process. As CBIR has not yet been applied to treatment planning, our work seeks to understand which current machine learning models are most viable in this context.Approach.Our proposed CBIR method trains a representation model that produces latent space embeddings of a patient's anatomical information. The latent space embeddings of new patients are then compared against those of previous patients in a database for image retrieval of dose distributions. All source code for this project is available on github.Main results.The retrieval performance of various CBIR methods is evaluated on a dataset consisting of both publicly available image sets and clinical image sets from our institution. This study compares various encoding methods, ranging from simple autoencoders to more recent Siamese networks like SimSiam, and the best performance was observed for the multitask Siamese network.Significance.Our current results demonstrate that excellent image retrieval performance can be obtained through slight changes to previously developed Siamese networks. We hope to integrate CBIR into automated planning workflow in future works.


Assuntos
Algoritmos , Software , Humanos , Aprendizado de Máquina , Armazenamento e Recuperação da Informação , Bases de Dados Factuais
13.
Multimed Tools Appl ; 82(8): 11619-11661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36035324

RESUMO

One of the main challenges in CBIR systems is to choose discriminative and compact features, among dozens, to represent the images under comparison. Over the years, a great effort has been made to combine multiple features, mainly using early, late, and hierarchical fusion techniques. Unveiling the perfect combination of features is highly domain-specific and dependent on the type of image. Thus, the process of designing a CBIR system for new datasets or domains involves a huge experimentation overhead, leading to multiple fine-tuned CBIR systems. It would be desirable to dynamically find the best combination of CBIR systems without needing to go through such extensive experimentation and without requiring previous domain knowledge. In this paper, we propose ExpertosLF, a model-agnostic interpretable late fusion technique based on online learning with expert advice, which dynamically combines CBIR systems without knowing a priori which ones are the best for a given domain. At each query, ExpertosLF takes advantage of user's feedback to determine each CBIR contribution in the ensemble for the following queries. ExpertosLF produces an interpretable ensemble that is independent of the dataset and domain. Moreover, ExpertosLF is designed to be modular, and scalable. Experiments on 13 benchmark datasets from the Biomedical, Real, and Sketch domains revealed that: (i) ExpertosLF surpasses the performance of state of the art late-fusion techniques; (ii) it successfully and quickly converges to the performance of the best CBIR sets across domains without any previous domain knowledge (in most cases, fewer than 25 queries need to receive human feedback).

14.
Curr Med Imaging ; 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36582065

RESUMO

Digital well-being records are multimodal and high-dimensional (HD). Better theradiagnostics stem from new computationally thorough and edgy technologies, i.e., hyperspectral (HSI) imaging, super-resolution, and nanoimaging, but advance mess data portrayal and retrieval. A patient's state involves multiple signals, medical imaging (MI) modalities, clinical variables, dialogs between clinicians and patients, metadata, genome sequencing, and signals from wearables. Patients' high volume, personalized data amassed over time have advanced artificial intelligence (AI) models for higherprecision inferences, prognosis, and tracking. AI promises are undeniable, but with slow spreading and adoption, given partly unstable AI model performance after real-world use. The HD data is a ratelimiting factor for AI algorithms generalizing real-world scenarios. This paper studies many health data challenges to robust AI models' growth, aka the dimensionality curse (DC). This paper overviews DC in the MIs' context, tackles the negative out-of-sample influence and stresses important worries for algorithm designers. It is tricky to choose an AI platform and analyze hardships. Automating complex tasks requires more examination. Not all MI problems need automation via DL. AI developers spend most time refining algorithms, and quality data are crucial. Noisy and incomplete data limits AI, requiring time to handle control, integration, and analyses. AI demands data mixing skills absent in regular systems, requiring hardware/software speed and flexible storage. A partner or service can fulfill anomaly detection, predictive analysis, and ensemble modeling.

15.
J Imaging ; 8(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135404

RESUMO

Graphical Search Engines are conceptually used in many development areas surrounding information retrieval systems that aim to provide a visual representation of results, typically associated with retrieving images relevant to one or more input images. Since the 1990s, efforts have been made to improve the result quality, be it through improved processing speeds or more efficient graphical processing techniques that generate accurate representations of images for comparison. While many systems achieve timely results by combining high-level features, they still struggle when dealing with large datasets and abstract images. Image datasets regarding industrial property are an example of an hurdle for typical image retrieval systems where the dimensions and characteristics of images make adequate comparison a difficult task. In this paper, we introduce an image retrieval system based on a multi-phase implementation of different deep learning and image processing techniques, designed to deliver highly accurate results regardless of dataset complexity and size. The proposed approach uses image signatures to provide a near exact representation of an image, with abstraction levels that allow the comparison with other signatures as a means to achieve a fully capable image comparison process. To overcome performance disadvantages related to multiple image searches due to the high complexity of image signatures, the proposed system incorporates a parallel processing block responsible for dealing with multi-image search scenarios. The system achieves the image retrieval through the use of a new similarity compound formula that accounts for all components of an image signature. The results shows that the developed approach performs image retrieval with high accuracy, showing that combining multiple image assets allows for more accurate comparisons across a broad spectrum of image typologies. The use of deep convolutional networks for feature extraction as a means of semantically describing more commonly encountered objects allows for the system to perform research with a degree of abstraction.

16.
Int J Inf Technol ; 14(7): 3619-3627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35791434

RESUMO

Content-based image retrieval (CBIR) systems are designed to retrieve images that are relevant, based on detailed analysis of latent image characteristics, thus eliminating the dependency of natural language tags, text descriptions, or keywords associated with the images. A CBIR system maintains high-level image visuals in the form of feature vectors, which the retrieval engine leverages for similarity-based matching and ranking for a given query image. In this paper, a CBIR system is proposed for the retrieval of medical images (CBMIR) for enabling the early detection and classification of lung diseases based on lung X-ray images. The proposed CBMIR system is built on the predictive power of deep neural models for the identification and classification of disease-specific features using transfer learning based models trained on standard COVID-19 Chest X-ray image datasets. Experimental evaluation on the standard dataset revealed that the proposed approach achieved an improvement of 49.71% in terms of precision, averaging across various distance metrics. Also, an improvement of 26.55% was observed in the area under precision-recall curve (AUPRC) values across all subclasses.

17.
Comput Methods Programs Biomed ; 221: 106889, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35649296

RESUMO

Computer-Aided Diagnosis systems have been developed to help medical professional in their decision making routines towards a more accurate diagnosis. These systems process medical exams such as Magnetic Resonance (MRI) in order to quantify meaningful features. These can be used with similarity-measuring techniques in a Content-Based Image Retrieval context, or inputted into a machine learning classifier in order to support early disease detection. For cardiac MRIs, single slice descriptors have been proposed in the two-dimensional domain, shape descriptors have been proposed in the three-dimensional domain, and previous reviews have mapped these two descriptor categories. Nonetheless, no systematic review on these descriptors have looked at full cardiac MRI images sets. We have reviewed the literature by searching for descriptors that consider the whole slice set (multi-slice) or frames (multi-frame) in cardiac MRI exams. We discuss descriptors and techniques, the datasets that were used, and the different evaluation metrics. Finally, we highlight literature gaps and research opportunities.


Assuntos
Diagnóstico por Computador , Imageamento por Ressonância Magnética , Algoritmos , Aprendizado de Máquina , Radiografia
18.
Multimed Tools Appl ; 81(22): 31219-31243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431613

RESUMO

Content-based image retrieval (CBIR) with deep neural networks (DNNs) on the cloud has tremendous business and technical advantages to handle large-scale image repositories. However, cloud-based CBIR service raises challenges in image data and DNN model security. Typically, users who wish to request CBIR services on the cloud require their input images remaining confidential. On the other hand, image owners may intentionally (or unintentionally) upload adversarial examples to the cloud servers, which potentially leads to the misbehavior of CBIR services. Generative Adversarial Networks (GANs) can be utilized to defense against such malicious behavior. However, the GANs model, if not well protected, can be easily abused by the cloud to reconstruct the users' original image data. In this paper, we focus on the problem of secure generative model evaluation and secure gradient descent (GD) computation in GANs. We propose two secure generative model evaluation algorithms and two secure minimizer protocols. Furthermore, we propose and implement Sec-Defense-Gan, a secure image reconstruction framework which can keep the image data, the generative model details and corresponding outputs confidential from the cloud. Finally, We carried out a set of benchmarks over two public available image datasets to show the performance and correctness of Sec-Defense-Gan.

19.
Cell Rep ; 38(9): 110424, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235802

RESUMO

Cancer histological images contain rich biological and clinical information, but quantitative representation can be problematic and has prevented the direct comparison and accumulation of large-scale datasets. Here, we show successful universal encoding of cancer histology by deep texture representations (DTRs) produced by a bilinear convolutional neural network. DTR-based, unsupervised histological profiling, which captures the morphological diversity, is applied to cancer biopsies and reveals relationships between histologic characteristics and the response to immune checkpoint inhibitors (ICIs). Content-based image retrieval based on DTRs enables the quick retrieval of histologically similar images using The Cancer Genome Atlas (TCGA) dataset. Furthermore, via comprehensive comparisons with driver and clinically actionable gene mutations, we successfully predict 309 combinations of genomic features and cancer types from hematoxylin-and-eosin-stained images. With its mounting capabilities on accessible devices, such as smartphones, universal encoding for cancer histology has a strong impact on global equalization for cancer diagnosis and therapies.


Assuntos
Neoplasias , Redes Neurais de Computação , Genômica , Humanos , Mutação/genética , Neoplasias/genética
20.
Math Biosci Eng ; 19(2): 1609-1632, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135220

RESUMO

This paper introduces a novel descriptor non-subsampled shearlet transform (NSST) local bit-plane neighbour dissimilarity pattern (NSST-LBNDP) for biomedical image retrieval based on NSST, bit-plane slicing and local pattern based features. In NSST-LBNDP, the input image is first decomposed by NSST, followed by introduction of non-linearity on the NSST coefficients by computing local energy features. The local energy features are next normalized into 8-bit values. The multiscale NSST is used to provide translational invariance and has flexible directional sensitivity to catch more anisotropic information of an image. The normalised NSST subband features are next decomposed into bit-plane slices in order to capture very fine to coarse subband details. Then each bit-plane slices of all the subbands are encoded by exploiting the dissimilarity relationship between each neighbouring pixel and its adjacent neighbours. Experiments on two computed tomography (CT) and one magnetic resonance imaging (MRI) image datasets confirms the superior results of NSST-LBNDP when compared to many recent well known relevant descriptors both in terms of average retrieval precision (ARP) and average retrieval recall (ARR).


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Anisotropia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA