RESUMO
Recent technological and methodological developments have enabled the use of array-based DNA methylation data to call copy number variants (CNVs). ChAMP, Conumee, and cnAnalysis450k are popular methods currently used to call CNVs using methylation data. However, so far, no studies have analyzed the reliability of these methods using real samples. Data from a cohort of individuals with genotype and DNA methylation data generated using the HumanMethylation450 and MethylationEPIC BeadChips were used to assess the consistency between the CNV calls generated by methylation and genotype data. We also took advantage of repeated measures of methylation data collected from the same individuals to compare the reliability of CNVs called by ChAMP, Conumee, and cnAnalysis450k for both the methylation arrays. ChAMP identified more CNVs than Conumee and cnAnalysis450k for both the arrays and, as a consequence, had a higher overlap (~62%) with the calls from the genotype data. However, all methods had relatively low reliability. For the MethylationEPIC array, Conumee had the highest reliability (57.6%), whereas for the HumanMethylation450 array, cnAnalysis450k had the highest reliability (43.0%). Overall, the MethylationEPIC array provided significant gains in reliability for CNV calling over the HumanMethylation450 array but not for overlap with CNVs called using genotype data.
Assuntos
Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Adulto , Estudos de Coortes , Feminino , Genótipo , Humanos , Reprodutibilidade dos TestesRESUMO
Illumina Infinium DNA methylation arrays are a cost-effective technology to measure DNA methylation at CpG sites genome-wide and across cohorts of normal and cancer samples. While copy number alterations are commonly inferred from array-CGH, SNP arrays, or whole-genome DNA sequencing, Illumina Infinium DNA methylation arrays have been shown to detect copy number alterations at comparable sensitivity. Here we present an accessible, interactive GenePattern notebook for the analysis of copy number variation using Illumina Infinium DNA methylation arrays. The notebook provides a graphical user interface to a workflow using the R/Bioconductor packages minfi and conumee. The environment allows analysis to be performed without the installation of the R software environment, the packages and dependencies, and without the need to write or manipulate code.