Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38316044

RESUMO

Objective.Multimodal medical image fusion (MMIF) technologies merges diverse medical images with rich information, boosting diagnostic efficiency and accuracy. Due to global optimization and single-valued nature, convolutional sparse representation (CSR) outshines the standard sparse representation (SR) in significance. By addressing the challenges of sensitivity to highly redundant dictionaries and robustness to misregistration, an adaptive convolutional sparsity scheme with measurement of thesub-band correlationin the non-subsampled contourlet transform (NSCT) domain is proposed for MMIF.Approach.The fusion scheme incorporates four main components: image decomposition into two scales, fusion of detail layers, fusion of base layers, and reconstruction of the two scales. We solved a Tikhonov regularization optimization problem with source images to obtain the base and detail layers. Then, after CSR processing, detail layers were sparsely decomposed using pre-trained dictionary filters for initial coefficient maps. NSCT domain'ssub-band correlationwas used to refine fusion coefficient maps, and sparse reconstruction produced the fused detail layer. Meanwhile, base layers were fused using averaging. The final fused image was obtained via two-scale reconstruction.Main results.Experimental validation of clinical image sets revealed that the proposed fusion scheme can not only effectively eliminate the interference of partial misregistration, but also outperform the representative state-of-the-art fusion schemes in the preservation of structural and textural details according to subjective visual evaluations and objective quality evaluations.Significance. The proposed fusion scheme is competitive due to its low-redundancy dictionary, robustness to misregistration, and better fusion performance. This is achieved by training the dictionary with minimal samples through CSR to adaptively preserve overcompleteness for detail layers, and constructing fusion activity level withsub-band correlationin the NSCT domain to maintain CSR attributes. Additionally, ordering the NSCT for reverse sparse representation further enhancessub-band correlationto promote the preservation of structural and textural details.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Tecnologia , Processamento de Imagem Assistida por Computador/métodos
2.
Microsc Res Tech ; 83(1): 35-47, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31612603

RESUMO

Biomedical image fusion is the process of combining the information from different imaging modalities to get a synthetic image. Fusion of phase contrast and green fluorescent protein (GFP) images is significant to predict the role of unknown proteins, analyze the function of proteins, locate the subcellular structure, and so forth. Generally, the fusion performance largely depends on the registration of GFP and phase contrast images. However, accurate registration of multi-modal images is a very challenging task. Hence, we propose a novel fusion method based on convolutional sparse representation (CSR) to fuse the mis-registered GFP and phase contrast images. At first, the GFP and phase contrast images are decomposed by CSR to get the coefficients of base layers and detail layers. Secondly, the coefficients of detail layers are fused by the sum modified Laplacian (SML) rule while the coefficients of base layers are fused by the proposed adaptive region energy (ARE) rule. ARE rule is calculated by discussion mechanism based brain storm optimization (DMBSO) algorithm. Finally, the fused image is achieved by carrying out the inverse CSR. The proposed fusion method is tested on 100 pairs of mis-registered GFP and phase contrast images. The experimental results reveal that our proposed fusion method exhibits better fusion results and superior robustness than several existing fusion methods.


Assuntos
Proteínas de Fluorescência Verde/química , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Algoritmos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA