Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930388

RESUMO

The continuous industrial development that occurs worldwide generates the need to develop new materials with increasingly higher functional properties. This need also applies to the basic material for electricity purposes, which is copper. In this article, we carry out studies on the influence of various alloying elements such as Mg, In, Si, Nb, Hf, Sb, Ni, Al, Fe, Zr, Cr, Zn, P, Ag, Sc, Pb, Sn, Co, Ti, Mn, Te and Bi on the electrical and mechanical properties of ETP-grade copper. The research involves producing copper alloys using the gravity die casting method with alloy additions of 0.1 wt.%, 0.3 wt.% and 0.5 wt.%. All resulting materials are cold-worked to produce wires, which are subsequently homogenized and annealed. The materials produced in this manner undergo testing to determine their specific electrical conductivity, tensile strength, yield strength, elongation and Vickers hardness (HV10 scale).

2.
Waste Manag Res ; 42(9): 814-822, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38616533

RESUMO

According to the state of the art, most of the mixed copper and copper alloy scrap and residues are processed in a copper smelter. Despite the environmental and economic advantages relative to primary production, the recycling of copper and its alloying elements (zinc, tin, lead, nickel, etc.) requires significantly more energy and cost than remelting unmixed or pure scrap fractions such as separate collected material or production scrap. To date, however, less attention has been given to the mechanical purification of mixed scrap. Therefore, sorting by alloy-specific components (SBASC) using an industrial X-ray fluorescence (XRF) sorting system was tested on the coarse metallic fraction (10-32 mm) of mixed foundry residues. The findings show that XRF-SBASC can recover higher-grade copper concentrates (reaching 98.3% Cu), leaded brass and complex alloys, such as aluminium bronze and red brass with high purities, for the use in the production of new materials. XRF-SBASC can therefore contribute to a more resource efficient metal recycling, mainly by reducing the energy consumption and loss levels in copper metallurgy.


Assuntos
Ligas , Cobre , Reciclagem , Espectrometria por Raios X , Cobre/análise , Cobre/química , Reciclagem/métodos , Ligas/química , Espectrometria por Raios X/métodos , Metalurgia , Resíduos Industriais/análise
3.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673179

RESUMO

Copper-based alloys designed to combine high electronic and thermal conductivities with high mechanical strength find a wide range of applications in different fields. Among the principal representatives, strongly diluted CuAg alloys are of particular interest as innovative materials for the realization of accelerating structures when the use of high-gradient fields requires increasingly high mechanical and thermal performances to overcome the limitations induced by breakdown phenomena. This work reports the production and optical characterization of CuAg crystals at low Ag concentrations, from 0.028% wt to 0.1% wt, which guarantee solid solution hardening while preserving the exceptional conductivity of Cu. By means of Fourier Transform Infrared (FTIR) micro-spectroscopy experiments, the low-energy electrodynamics of the alloys are compared with that of pure Cu, highlighting the complete indistinguishability in terms of electronic transport for such low concentrations. The optical data are further supported by Raman micro-spectroscopy and SEM microscopy analyses, allowing the demonstration of the full homogeneity and complete solubility of solid Ag in copper at those concentrations. Together with the solid solution hardening deriving from the alloying process, these results support the advantage of strongly diluted CuAg alloys over conventional materials for their application in particle accelerators.

4.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541480

RESUMO

Aftermarket additives are used to enhance the performance of internal combustion engines in specific aspects such as reducing wear, increasing power, and improving fuel economy. Despite their advantages, they can sometimes cause corrosion-related problems. This research evaluated the corrosiveness of four aftermarket additives on the corrosion of a high-leaded tin bronze alloy over 28 days at 80 °C in immersion tests. Among the evaluated products, three showed corrosive effects ranging from intermediate to severe. Notably, the visual appearance of the surfaces often did not indicate the underlying corrosive damage. Therefore, the assessment of corrosiveness was based on chemical characterizations conducted on both the drained oils and the bronze surfaces. The study found minimal oil degradation under the testing conditions, indicating that the primary cause of corrosion was the interaction between the specific additives and the metal elements of the alloy, rather than oil degradation itself. A direct correlation was observed between the dissolution of lead and copper and the adsorption of S and Cl-containing additives on the surfaces, respectively. The corrosive impact of Cl-containing additives in aftermarket formulations was significantly reduced when mixed with engine oil SAE 10W-30 (at a 25:1 ratio), suggesting a mitigated effect in combined formulations, which is the recommended usage for engines.

5.
Sci Rep ; 14(1): 6447, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499616

RESUMO

Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10-50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + ß phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.

6.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255518

RESUMO

This study presents an experimental approach to address sulfur-induced embrittlement in copper alloys. Building on recent theoretical insights, we identified specific solute elements, such as silicon and silver, known for their strong binding affinity with vacancies. Through experimental validation, we demonstrated the effectiveness of Si and Ag in preventing sulfur-induced embrittlement in copper, even though they are not typical sulfide formers such as zirconium. Additionally, our findings highlight the advantages of these elements over traditional solutes, such as their high solubility and propensity to accumulate along grain boundaries. This approach may have the potential to be applied to other metals prone to sulfur-induced embrittlement, including nickel, iron, and cobalt, offering broader implications for materials engineering strategies and alloy development.

7.
Materials (Basel) ; 17(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255610

RESUMO

In this study, metal disks with different chemical composition (two Ag-based alloys and three Cu-based alloys) were buried in the soil of coastal archaeological sites for a period of 15 years. The aim was to naturally induce the growth of corrosion patinas to obtain a deeper insight into the role of alloying elements in the formation of the patinas and into the degradation mechanisms occurring in the very early stages of burial. To reach the aim, the morphological, compositional and structural features of the patinas grown over 15 years were extensively characterized by optical microscopy, field emission scanning electron microscopy coupled with energy dispersive spectrometry, X-ray diffraction and micro-Raman spectroscopy. Results showed that the Cu amount in Ag-based alloys strongly affected the final appearance, as well as the composition and structure of the patinas. Corrosion mechanisms typical of archaeological finds, such as the selective dissolution of Cu, Pb and Zn and internal oxidation of Sn, occurred in the Cu-based alloys, even if areas enriched in Zn and Pb compounds were also detected and attributed to an early stage of degradation. In addition, some unusual and rare compounds were detected in the patinas developed on the Cu-based disks.

8.
Heliyon ; 9(9): e19626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810079

RESUMO

The reproduction of archaeological corrosion patinas is a key issue for the reliable validation of conservation materials before their use on cultural objects. In this study, bronze disks were intentionally buried for 15 years in the soil of the archaeological site of Tharros, both in laboratory and in situ, with the aim of reproducing corrosion patinas typical of archaeological artifacts to be used as representative surfaces for testing novel cleaning gels. The microstructural, microchemical and mineralogical features of the patinas were analyzed by a multianalytical approach, based on optical microscopy (OM), field emission scanning electron microscopy coupled with energy dispersive spectrometry (FE-SEM-EDS) and X-ray diffraction (XRD). The patinas developed in 15 years were compared with an archaeological bronze recovered from the same site after about two thousand years of burial (referred as short-term and long-term interaction, respectively). Results revealed a similar corrosion behavior, especially in terms of chemical composition and corrosion mechanisms. XRD detected the ubiquitous presence of cuprite, copper hydroxychlorides and terrigenous minerals, while OM and FE-SEM-EDS analyses of cross-sections evidenced similar patinas' stratigraphy, identifying decuprification as driving corrosion mechanism. However, some differences related to the type of local environment and to the time spent in soil were evidenced. In particular, patinas developed in situ are more heterogeneous and rougher, while the archaeological one is thicker and presents a major amount of cuprite, terrigenous deposits and uncommon corrosion compounds. Based on our findings, the disks buried in situ were selected and used as disposable substrates to study the cleaning effect of a novel polyvinyl alcohol (PVA)-based gel loaded with a chelating agent (Na2EDTA · 2H2O). Results show that the gel is effective in removing disfiguring degradation compounds and preserving the stable and protective patina. Based on the conservation needs, the time of application can be properly tuned. It is worth noticing that after a few minutes the green corrosion products can be selectively removed. The EDS analysis performed on the gels after cleaning reveals that they are highly selective for the removal of copper(II) compounds rather than Cu(I) oxide or Cu(0) from bronze substrates.

9.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629813

RESUMO

In this paper, we investigated the effect of adding rhenium to Cu-Ni-Si alloys on the mechanical properties and electrical conductivity of these alloys. The scientific objective was to analyze the effect of Re addition on the microstructure of heat- and cold-treated CuNi2Si1 alloys. Transmission electron microscopy (TEM, STEM) and scanning electron microscopy (EDS, WDS) were used to examine the microstructure. Orientation mapping was also performed using a scanning electron microscope (SEM) equipped with a backscattered electron diffraction (EBSD) system. In addition, hardness at low load and conductivity were tested. The obtained results showed that modifying the chemical composition of Re (0.6 wt%) inhibits the recrystallization process in the CuNi2Si1 alloy, which was cold deformed and then subjected to recrystallization annealing.

10.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176234

RESUMO

This article presents the results of research carried out on an experimental rolling mill with axial, cyclic movement of rolls (RCMR). The device was made on the basis of an unconventional technical solution for the movement of shaping tools and equipped with a complete measuring system recording all the parameters of the process. The research was conducted on selected copper alloys CuFe2 and CuCr0.6. Rolling tests in the RCMR process were carried out for rolling speeds vr = 3.1 × 10-3, 6.3 × 10-3 and 9.4 × 10-3 m/s, which correspond to the rotational speed of the rollers at ω = 1, 2 and 3 rpm for an active diameter of the rollers = 60 mm. In testing the thermal effects of the process, the rolling speed ω = 0.7 rpm was also used. A constant value of the frequency of axial movement of the rollers f = 1 Hz and the amplitude of the displacement of the rollers A = 0.8 mm were assumed. The rolling process for the strands was carried out in six culverts using the average relative crush in the passage of Δh = 15%. Conventional rolling tests were carried out to compare rolling processes, and the obtained data formed the basis for assessing the strain intensity and identifying local deformation zones in the RCMR rolling process. The waveforms of rolling pressures, intensity and non-uniformity of deformation, and increase in the temperature of the strip surface in subsequent culverts were compared with the results obtained in the conventional rolling process.

11.
Gels ; 9(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36975640

RESUMO

Currently gels are widely used in the restoration of paintings, graphic arts, stuccowork and stonework, but their use in metal restoration is less widespread. In this study, several polysaccharide-based hydrogels (agar, gellan and xanthan gum) were selected for use in metal treatments. The use of hydrogels allows to localize a chemical or electrochemical treatment. This paper presents several examples of treatment of metal objects of cultural heritage, i.e., historical or archaeological objects. The advantages, disadvantages and limits of hydrogel treatments are discussed. The best results are obtained for the cleaning of copper alloys via associating an agar gel with a chelating agent (EDTA (ethylenediaminetetraacetic acid) or TAC (tri-ammonium citrate)). The hot application allows to obtain a peelable gel, particularly adapted for historical objects. Electrochemical treatments using hydrogels have been successful for the cleaning of silver and for the dechlorination of ferrous or copper alloys. The use of hydrogels for the cleaning of painted aluminum alloys is possible but it has to be coupled with mechanical cleaning. However, for the cleaning of archaeological lead, the cleaning using hydrogels was not very effective. This paper shows the new possibilities of using hydrogels for the treatment of metal cultural heritage objects: agar is the most promising hydrogel.

12.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770646

RESUMO

This work studies two copper-based alloys as potential antimicrobial weapons for sectors where surface hygiene is essential. Effects of different alloying elements addition at the same Cu content (92.5% by weight) on the corrosion resistance and the antibacterial performance of two copper alloys were studied in an aerated disinfectant solution (0.25% v/v Aniosurf Premium (D)) by electrochemical corrosion, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and antibacterial tests. Results showed that the nature of the alloying elements had a clear influence on the corrosion resistance and antibacterial performance. Electrochemical impedance results and surface analyses demonstrate the presence of organic compounds bound on the substrate and that a film covers part of the total active surface and may act as a protective barrier by preventing the interaction between metal and solution, decreasing the antimicrobial performance of copper-based materials. Low zinc and silicon contents in copper alloys allows for better aging behavior in D solution while maintaining good antibacterial performance. The XPS and ToF-SIMS results indicated that artificial aging in disinfectant enhanced Cu enrichment in the organic film formed, which could effectively stimulate the release of Cu ions from the surface.


Assuntos
Cobre , Desinfetantes , Cobre/química , Ligas/farmacologia , Ligas/química , Desinfetantes/farmacologia , Corrosão , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais
13.
Environ Sci Pollut Res Int ; 30(10): 27441-27457, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385333

RESUMO

Nantokite (CuCl) locked inside subsurface micro-pits has been recognised as the driving force to the form of corrosion called bronze disease. The use of the traditional corrosion inhibitor benzotriazole is questioned because of toxicity. So there is a need for alternative conservation treatments. This work is focused on the experimental design to test the effectiveness of sodium oxalate followed by treatment with limewater to face bronze disease on outdoor bronzes. A number of foundry bronze coupons were exposed to weathering at Genoa Experimental Marine Station (GEMS) exposure site and sprayed twice a week with a 5% NaCl solution for the first 124 days. After 562 days of natural weathering, the patinas on coupons were characterised with non-destructive techniques (NDT) and the presence of nantokite was verified. We designed a workflow, as similar as possible to conservation treatments on real artworks, to test a 3% w/v sodium oxalate treatment with two different application times, with or without limewater, on the coupons. The effectiveness of the treatments was analysed by comparison of surface properties by several NDT measurements. A statistical approach and XRD measurements directly on the corroded bronze surfaces are suggested as an effective way to characterise and compare the overall behaviour of bronze disease treatments for conservation.


Assuntos
Ligas , Cobre , Ácido Oxálico , Cloreto de Sódio , Corrosão
14.
Materials (Basel) ; 17(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38204085

RESUMO

Hoard finds from the Bronze Age have appeared all over Europe, prompting questions about their functions (either as raw materials for recycling or votive objects). The hoard trove of raw materials from Przybyslaw in Greater Poland is an interesting example of a discovery that is related to the foundry activities of Late Bronze Age and Early Iron Age communities (c. 600 BC). The deposit consists of fragments of raw materials that were damaged end products intended for smelting. The research included the characterisation of the material in terms of the variety of the raw materials that were used. The individual elements of the hoard were characterised in terms of their chemical compositions, microstructures, and properties. A range of modern instrumental research methods were used: metallographic macroscopic and microscopic observations by optical microscopy (OM), scanning electron microscopy (SEM), chemical-composition analysis by X-ray fluorescence spectroscopy (ED-XRF), X-ray microanalysis (EDS), and detailed crystallisation analysis by electron microscopy with an emphasis on electron backscatter diffraction (EBSD). As part of this study, model alloys were also prepared for two of the selected chemical compositions, (i.e., CuPbSn and CuPb). These alloys were analysed for their mechanical and technological properties. This research of the hoard from Przybyslaw (Jarocin district, Greater Poland) has contributed to the recognition and interpretation of the function and nature of the hoard by using modern research and modelling methods as a cultic raw material deposit.

15.
Sci Total Environ ; 850: 157804, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932861

RESUMO

Epilithic bacteria play a fundamental role in the conservation of cultural heritage (CH) materials. On stones, bacterial communities cause both degradation and bioprotection actions. Bronze biocorrosion in non-burial conditions is rarely studied. Only few studies have examined the relationship between bacteria communities and the chemical composition of patinas (surface degradation layers). A better comprehension of bacterial communities growing on our CH is fundamental not only to understand the related decay mechanisms but also to foresee possible shifts in their composition due to climate change. The present study aims at (1) characterizing bacterial communities on bronze and marble statues; (2) evaluating the differences in bacterial communities' composition and abundance occurring between different patina types on different statues; and (3) providing indications about a representative bacterial community which can be used in laboratory tests to better understand their influence on artefact decay. Chemical and biological characterization of different patinas were carried out by sampling bronze and marble statues in Bologna and Ravenna (Italy), using EDS/Raman spectroscopy and MinION-based 16SrRNA sequencing. Significant statistical differences were found in bacterial composition between marble and bronze statues, and among marble patinas in different statues and in the same statue. Marble surfaces showed high microbial diversity and were characterized mainly by Cyanobacteria, Proteobacteria and Deinococcus-Thermus. Bronze patinas showed low taxa diversity and were dominated by copper-resistant Proteobacteria. The copper biocidal effect is evident in greenish marble areas affected by the leaching of copper salts, where the bacterial community is absent. Here, Ca and Cu oxalates are present because of the biological reaction of living organisms to Cu ions, leading to metabolic product secretions, such as oxalic acid. Therefore, a better knowledge on the interaction between bacteria communities and patinas has been achieved.


Assuntos
Carbonato de Cálcio , Cobre , Artefatos , Bactérias , Carbonato de Cálcio/química , Cobre/química , Ácido Oxálico , Sais
16.
Materials (Basel) ; 15(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35591592

RESUMO

The presented study successfully demonstrated advantages of multistep anodization of AA2024-T3. Coating properties and morphology were studied in detail for five anodization processes: a conventional Base process with a constant applied current density and processes with current density applied in one (OS1 and OS2) and five (MS1 and MS2) steps at different magnitudes during the ramp period. Due to lower oxygen infusion, processes MS1 and MS2 produced a more intact coating with reduced porosity and enhanced abrasion resistance and hardness. The presented results clearly demonstrate that starting anodization at a low voltage and then slowly ramping current density will form coatings with a higher aluminum/oxygen ratio and enhanced properties over a shorter period of processing.

17.
Materials (Basel) ; 15(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629739

RESUMO

For the first time, uniaxial megaplastic compression was successfully applied to a polycrystalline shape-memory Cu-Al-Ni-based alloy. The samples before and after uniaxial megaplastic compression were examined by methods of X-ray diffraction, optical, electron transmission, and scanning microscopy. The temperature dependences of electrical resistance and the mechanical properties of the alloys under uniaxial tension were also measured. The mechanical behavior under uniaxial megaplastic compression in isothermal conditions in the range of 300-1073 K was studied using the Instron 8862 electric testing machine. The microstructure, phase composition, and martensitic transformations in the eutectoid alloy (Cu-14wt.%Al-4 wt.%Ni) were studied. The radical refinement of the grain structure of the initial hardened D03 austenite was found under controlled isothermal compression, due to dynamic recrystallization in the temperature range 673-1073 K and velocities of 0.5-5 mm/min. Compression at 873-1073 K was accompanied by simultaneous partial pro-eutectoid decomposition with the precipitation of the γ2 phase. Compression at temperatures of 673 and 773 K-that is, below the eutectoid decomposition temperature (840 K)-was accompanied by the precipitation of disperse γ2 and α phases, and ultradisperse B2' particles. Cooling of the deformed alloy to room temperature after performing each regime of compression led to thermoelastic martensitic transformation, together with the precipitation of the ß' and γ' phases. The formation of a fine-grained structure produced an unusual combination of strength and plasticity of the initially brittle alloy both under controlled uniaxial compression, and during subsequent tensile tests at room temperature.

18.
Materials (Basel) ; 15(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160761

RESUMO

The paper investigated the possibility of obtaining large-sized blocks of C11000 copper on stainless steel substrates via electron beam wire-feed additive technology. The features of the microstructure and grain texture formation and their influence on the mechanical properties and anisotropy were revealed. A strategy of printing large-sized C11000 copper was determined, which consists of perimeter formation followed by the filling of the internal layer volume. This allows us to avoid the formation of defects in the form of drops, underflows and macrogeometry disturbances. It was found that the deposition of the first layers of C11000 copper on a steel substrate results in rapid heat dissipation and the diffusion of steel components (Fe, Cr and Ni) into the C11000 layers, which promotes the formation of equiaxed grains of size 8.94 ± 0.04 µm. As the blocks grow, directional grain growth occurs close to the <101> orientation, whose size reaches 1086.45 ± 57.13 µm. It is shown that the additive growing of large-sized C11000 copper leads to the anisotropy of mechanical properties due to non-uniform grain structure. The tensile strength in the opposite growing direction near the substrate is 394 ± 10 MPa and decreases to 249 ± 10 MPa as the C11000 blocks grows. In the growing direction, the tensile strength is 145 ± 10 MPa.

19.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614446

RESUMO

A study of the effect of rotary swaging (RS) on the microstructure and properties of the pre-extruded and pre-quenched Cu-0.5%Cr-0.08%Zr alloy was performed. RS leads to the formation of an ultrafine-grained (UFG) microstructure. UFG structure formation caused by RS increases the ultimate tensile strength (UTS) up to 443 ± 5 MPa and 597 ± 9 MPa for pre-quenched and pre-extruded alloys, respectively. Additionally, the reduction in ductility occurs after RS. It should be noted that UTS is increased for a pre-quenched alloy, while the strength of a pre-extruded alloy is dropped. The growth of UTS for the pre-quenched alloy is associated with the precipitation of fine Cr particles, whereas the recovery processes in the pre-extruded alloy induce the reduction in its UTS. An additional advantage of RS is an increase in the fatigue limit of the pre-quenched alloy up to 265 MPa, and of the pre-extruded alloy up to 345 MPa. The combination of extrusion and RS allows for the increase of the UTS of the Cu-0.5%Cr-0.08%Zr alloy up to 597 ± 9 MPa, while the levels of ductility and electrical conductivity are 10.9 ± 0.9% and 82.0 ± 1.7% IACS, respectively.

20.
Antibiotics (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943651

RESUMO

Copper (Cu) and its alloys have bactericidal activity known as "contact killing" with degradation of nucleic acids inside the bacteria, which is beneficial to inhibit horizontal gene transfer (HGF). In order to understand the nucleic acid degradability of Cu and its alloy surfaces, we developed a new in vitro method to quantitatively evaluate it by a swab method under a "dry" condition and compared it with that of commercially available antibacterial materials such as antibacterial stainless steel, pure silver, and antibacterial resins. As a result, only Cu and its alloys showed continuous degradation of nucleic acids for up to 6 h of contact time. The nucleic acid degradability levels of the Cu alloys and other antibacterial materials correlate to their antibacterial activities evaluated by a film method referring to JIS Z 2801:2012 for Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Nucleic acid degradation by copper (I) and (II) chlorides was confirmed at the ranges over 10 mM and 1-20 mM, respectively, suggesting that the copper ion release may be responsible for the degradation of the nucleic acids on Cu and its alloy surfaces. In conclusion, the higher Cu content in the alloys gave higher nucleic acid degradability and higher antibacterial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA