Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mediastinum ; 8: 39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161584

RESUMO

Background and Objective: Thymic carcinoma is an exceptionally rare cancer, with an annual incidence of just 0.15-0.29 per 100,000 people. Owing to its rarity, only few proven treatments have been developed. Understanding its genetic profile is crucial for the development of targeted therapies. However, limited studies have exclusively examined thymic carcinoma mutations, with most investigation combining thymomas and thymic carcinomas. This paper reviews findings from genetic studies focusing on thymic carcinoma alone and compares them to those of thymoma. Methods: We conducted a PubMed search for relevant English studies on thymic carcinoma genomics. Then, key papers utilizing target sequencing or whole-exome sequencing were analyzed. Key Content and Findings: The most frequently mutated genes were TP53, CDKN2A, CDKN2B, CYLD, KIT, TET2, SETD2, BAP1, and ASXL1. TP53 and CDKN2A are correlated with poor prognosis. CYLD, which regulates signaling related with proliferation and interacts with AIRE expression and T cell development, might predict the immunotherapy response. KIT mutations might enable targeted therapy. TET2, SETD2, BAP1, and ASXL1 regulate epigenetics, suggesting disruption of these mechanisms. Higher tumor mutational burden (TMB) and 16q loss distinguish thymic carcinoma from thymoma. Although some copy number aberrations are shared, thymic carcinoma exhibits a mutational profile distinct from that of thymoma. Conclusions: Thymic carcinoma demonstrates a unique genomic landscape, suggesting a molecular pathogenesis distinct from that of thymoma. Our findings revealed prognostic biomarkers such as TP53/CDKN2A and potential therapeutic targets such as KIT. Because thymic carcinoma is extremely rare, sharing molecular profiling data could provide valuable insights into the molecular mechanisms driving the development of these tumors.

2.
J Pathol ; 263(3): 360-371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779852

RESUMO

Mutations are abundantly present in tissues of healthy individuals, including the breast epithelium. Yet it remains unknown whether mutant cells directly induce lesion formation or first spread, leading to a field of mutant cells that is predisposed towards lesion formation. To study the clonal and spatial relationships between morphologically normal breast epithelium adjacent to pre-cancerous lesions, we developed a three-dimensional (3D) imaging pipeline combined with spatially resolved genomics on archival, formalin-fixed breast tissue with the non-obligate breast cancer precursor ductal carcinoma in situ (DCIS). Using this 3D image-guided characterization method, we built high-resolution spatial maps of DNA copy number aberration (CNA) profiles within the DCIS lesion and the surrounding normal mammary ducts. We show that the local heterogeneity within a DCIS lesion is limited. However, by mapping the CNA profiles back onto the 3D reconstructed ductal subtree, we find that in eight out of 16 cases the healthy epithelium adjacent to the DCIS lesions has overlapping structural variations with the CNA profile of the DCIS. Together, our study indicates that pre-malignant breast transformations frequently develop within mutant clonal fields of morphologically normal-looking ducts. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Variações do Número de Cópias de DNA , Mutação , Humanos , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Imageamento Tridimensional , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Células Clonais
3.
Front Oncol ; 14: 1341997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313801

RESUMO

Background: According to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease. Method: This study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA. Results: Protein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome. Conclusion: In summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA