Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275301

RESUMO

Waste from the agri-food chain represents a valuable reservoir of organic compounds with health-promoting properties. Momast Plus 30 Bio (MP30B) is a derivative obtained from olive-oil wastewater. Its enrichment in hydroxytyrosol (HT) via a patented technique has paved the way for its potential application as a dietary supplement in preventing cardiovascular diseases. MP30B demonstrates no significant alteration in cardiac and vascular parameters in "ex vivo" studies. However, it exhibits a strong ability to remove reactive oxygen species and exerts anti-inflammatory effects, notably reducing the concentration of iNOS and mitigating heart infections in "in vitro" experiments. Furthermore, MP30B slightly decreases the stiffness of the "ex vivo" thoracic aorta, potentially resulting in lowered arterial pressure and enhanced energy transfer to a normal ventricle. Based on these findings, we posit MP30B as a promising extract for cardiovascular disease prevention, and its specific antibacterial properties suggest its utility in preventing cardiac infections.


Assuntos
Doenças Cardiovasculares , Olea , Águas Residuárias , Águas Residuárias/química , Doenças Cardiovasculares/prevenção & controle , Olea/química , Humanos , Azeite de Oliva/química , Animais , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Suplementos Nutricionais , Resíduos Industriais/análise , Anti-Inflamatórios/farmacologia
2.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200540

RESUMO

Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet. Many studies have highlighted its crucial preventive role against cardiovascular disease, neurodegenerative disorders, metabolic syndrome and cancer, with these effects being due to the synergistic anti-inflammatory and antioxidant activities of minor components, such as polyphenols and tocols. The aim of the present study is to implement new technologies for olive oil mills and develop an efficient large-sized industrial process for the continuous extraction of healthier EVOOs that are enriched with these bioactive compounds. Non-thermal technologies, namely ultrasound (US) and pulsed electric field (PEF), have been tested, separately and in combination, to eliminate the need for traditional malaxation. There is extensive literature to support the efficacy of ultrasound-assisted extraction (UAE) and PEF treatments in EVOO production. A newly designed US device and a PEF industrial chamber have been combined into a single, integrated continuous-flow setup, the performance of which in the extraction of EVOO from green Coratina olives has been evaluated herein. Extraction yields, physico-chemical and organoleptic characteristics, and polyphenol and tocol contents were monitored throughout the trials, and the last three were measured at accelerated aging times (AAT) of 15 and 30 days. The US and combined US-PEF processes not only increased daily oil production (ton/day, by nearly 45%), but also eliminated the need for kneading during malaxation, resulting in significant energy savings (approximately 35%). In addition, these innovations enriched the resulting EVOO with nutritionally relevant minor components (8-12% polyphenols, 3-5% tocols), thereby elevating its quality and market value, as well as overall stability. The introduction of continuous-flow US and PEF technologies is a remarkable innovation for the EVOO industry, as they offer benefits to both producers and consumers. The EVOO resulting from non-thermal continuous-flow production meets the growing demand for healthier, nutrient-enriched products.

3.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37507887

RESUMO

The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection.

4.
Foods ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36360029

RESUMO

The aim of the present study is to develop a new industrial process for the continuous-flow extraction of virgin olive oil (VOO) using the non-thermal ultrasound (US) and pulsed electric field (PEF) treatments. These technologies have been tested both separately and in combination, with the aim of making the malaxation step unnecessary. The ultrasound-assisted extraction (UAE) and PEF treatments are both effective technologies for VOO production and have been well documented in the literature. The present study combines a new continuous-flow set-up, with four US units and PEF treatment. The industrial-plant prototype is able to improve VOO yields, thanks to powerful non-thermal physical effects (acoustic cavitation and electroporation), from 16.3% up to 18.1%. Moreover, these technologies increased the content of nutritionally relevant minor components, which, in turn, improves VOO quality and its commercial value (overall tocopherols and tocotrienols improved from 271 mg/kg under the conventional process to 314 mg/kg under the US process). The combined UAE and US-PEF process also increased the extraction yield, while overcoming the need for kneading in the malaxation step and saving process water (up to 1512 L per working day). Continuous-flow US and PEF technologies may be a significant innovation for the VOO industry, with benefits both for oil millers and consumers. The VOO obtained via non-thermal continuous-flow production can satisfy the current trend towards healthier nutrient-enriched products.

5.
Nutrients ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406100

RESUMO

MOMAST® GR25 is a polyphenolic granular complex from olive pressing juice with high total content in polyphenols. In this work, we evaluated the possible anti-inflammatory effects of MOMAST® GR25 in both acute and chronic inflammatory models. MOMAST® GR25 decreased the levels of prostaglandin (PG) E2 and 8-iso-PGF2α in isolated rat colon, liver, and heart specimens stimulated with lipopolysaccharide (LPS). In vivo, compared to controls, rats treated with MOMAST® GR25 (100 mg/kg to 1 g/kg) showed a significant reduction in both licking/biting time in the formalin test. In a rat model of osteoarthritis by monoiodoacetate (MIA) injection, MOMAST® GR25 showed pain-relieving properties when acutely administered, reducing mechanical hyperalgesia and spontaneous pain. Moreover, a repeated daily treatment with MOMAST® GR25 (300 mg/kg) fully counteracted osteoarticular pain without the development of tolerance to the antinociceptive effect. Taken together, our present findings showed that MOMAST® GR25 could represent a potential strategy for the treatment of inflammation and pain.


Assuntos
Olea , Osteoartrite , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Dor/etiologia , Ratos
6.
Nutrients ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35276852

RESUMO

MOMAST® is a patented phenolic complex derived from the olive oil vegetation water, a by-product of the olive oil supply chain, in which hydroxytyrosol (OH-Tyr) and tyrosol (Tyr) and verbascoside are the main compounds. This study was aimed at investigating its hypocholesterolemic effect by assessing the ability to modulate the low-density lipoprotein (LDL) receptor (LDLR)/sterol regulatory element-binding protein 2 (SREBP-2), and proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. MOMAST® inhibits the in vitro activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCOAR) with a dose-response trend. After the treatment of HepG2 cells, MOMAST® increases the SREBP-2, LDLR, and HMGCoAR protein levels leading, from a functional point of view to an improved ability of hepatic cells to up-take LDL from the extracellular environment with a final cholesterol-lowering effect. Furthermore, MOMAST® decreased the PCSK9 protein levels and its secretion in the extracellular environment, presumably via the reduction of the hepatic nuclear factor 1-α (HNF1-α). The experiments were performed in parallel, using pravastatin as a reference compound. Results demonstrated that MOMAST® may be exploited as a new ingredient for the development of functional foods and/or nutraceuticals for cardiovascular disease prevention.


Assuntos
Colesterol , Pró-Proteína Convertase 9 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
7.
Foods ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327288

RESUMO

Coratina monocultivar extra virgin olive oil (EVOO) is known for its level of bitterness, which, if too high, can cause consumer acceptance problems. The aim of this study was to modulate the bitter taste of freshly produced olive oil through endogenous enzymatic activity and microbiota during the decantation phase. The opalescent appearance of the newly produced EVOO was substantially reduced during the first three months of decantation due to the deposition of more than 90% of suspended material, consisting of vegetation water and suspended solid particles. The high content of biophenols and the reduction in water concentration in the oil samples negatively affected the survival of yeasts, which were absent in the oil samples at the end of the third month of decantation. The oleuropeinolytic activity was very intense during the first month of decantation, whereas the reduction in the bitter taste associated with the aglycons was consistent only in the second and third months of decantation. At the end of decantation, the sensory notes of bitterness in the Coratina EVOO were reduced by 33%, lowering the position on the value scale without altering the other qualitative parameters whose values fell within the limits of the commercial EVOO class.

8.
J Sci Food Agric ; 102(7): 2741-2749, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34716600

RESUMO

BACKGROUND: Tocopherols and sterols are minor components of virgin olive oils that contribute to oil quality. Based on observations at different geographical locations, it has been suggested that environmental temperature during fruit growth affects tocopherol and sterol oil concentrations in olive fruit. However, controlled experiments have not been conducted to directly assess their responses to temperature. In this study, a manipulative experiment using open-top chambers (OTCs) was performed in the field to evaluate the responses of these oil components to a moderate air temperature increase during oil accumulation in young trees of two olive cultivars (Arbequina, Coratina). The two temperature levels in the OTCs were a control about 1 °C above ambient temperature (T0) and a heated treatment (T+) with a target temperature of 4 °C above T0. RESULTS: Total tocopherol and sterol oil concentrations in olive fruit were generally higher in the T+ temperature treatment than in the control at the end of the oil accumulation period. The increase in total tocopherols in T+ appeared to be related to a decrease in fruit oil concentration with heating. Individual sterols showed both significant increases and decreases due to T+, and some differences in response occurred between the two cultivars. CONCLUSION: These findings provide evidence that growth temperature affects tocopherol and sterol oil concentrations in olive fruit at the end of the oil accumulation period. Cultivars should be carefully chosen for new olive-growing regions, and the results could be relevant for global warming scenarios in existing growing regions. © 2021 Society of Chemical Industry.


Assuntos
Olea , Fitosteróis , Frutas , Azeite de Oliva , Óleos de Plantas , Esteróis , Temperatura , Tocoferóis , Vitamina E
9.
Food Chem ; 345: 128778, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33310250

RESUMO

The innovative combination of ultrasound (Us) with a thermal exchanger to produce high quality extra virgin olive oil (EVOO) was studied using Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate analysis (MVA). Major and minor metabolomic components of Apulian Coratina EVOO obtained using the two methods were compared. Early and late olive ripening stages were also considered. An increased amount of polyphenols was found for EVOOs obtained using the Us with respect to the conventional method for both early and late ripening stages (900.8 ± 10.3 and 571.9 ± 9.9 mg/kg versus 645.1 ± 9.3 and 440.8 ± 10.4 mg/kg). NMR spectroscopy showed a significant increase (P < 0.05) in polyunsaturated fatty acids (PUFA) as well as in the tyrosol and hydroxytyrosol derivatives, such as oleocanthal, oleacein, and elenolic acid, for both ripening stages. In conclusion, NMR spectroscopy provides information about the metabolomic components of EVOOs to producers, while the Us process increases the levels of healthy bioactive components.


Assuntos
Indústria Alimentícia , Espectroscopia de Ressonância Magnética , Metabolômica , Azeite de Oliva/metabolismo , Temperatura , Ondas Ultrassônicas , Análise Multivariada
10.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430921

RESUMO

MOMAST(®) HY100 and MOMAST(®) HP30 are polyphenolic liquid complexes from olive pressing juice with a total polyphenolic content of 100 g/kg (at least 50% as hydroxytyrosol) and 36 g/kg (at least 30% as hydroxytyrosol), respectively. We investigated the potential protective role of MOMAST(®) HY100 and MOMAST(®) HP30 on isolated rat colon, liver, heart, and prefrontal cortex specimens treated with Escherichia coli lipopolysaccharide (LPS), a validated ex vivo model of inflammation, by measuring the production of prostaglandin (PG)E2, 8-iso-PGF2α, lactate dehydrogenase (LDH), as well as cyclooxygenase (COX)-2, tumor necrosis factor α (TNFα), and inducible nitric oxide synthase (iNOS) mRNA levels. MOMAST(®) HY100 decreased LPS-stimulated PGE2 and LDH levels in all tested tissues. Following treatment with MOMAST(®) HY100, we found a significant reduction in iNOS levels in prefrontal cortex and heart specimens, COX-2 and TNFα mRNA levels in heart specimens, and 8-iso-PGF2α levels in liver specimens. On the other hand, MOMAST(®) HP30 was found to blunt COX-2, TNFα, and iNOS mRNA levels, as well as 8-iso-PGF2α in cortex, liver, and colon specimens. MOMAST(®) HP30 was also found to decrease PGE2 levels in liver specimens, while it decreased iNOS mRNA, LDH, and 8-iso-PGF2α levels in heart specimens. Both MOMAST(®) HY100 and MOMAST(®) HP30 exhibited protective effects on multiple inflammatory and oxidative stress pathways.


Assuntos
Lipopolissacarídeos/farmacologia , Olea/química , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA