Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.689
Filtrar
1.
Radiol Case Rep ; 19(9): 3637-3642, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983288

RESUMO

Tuberous sclerosis complex is a multisystem genetic disease with autosomal dominant inheritance, characterized by the development of benign tumors known as hamartomas that affect multiple organs. It is a condition with a wide phenotypic spectrum, and its clinical presentation varies over time within the same individual. Hence, the importance of early screening and rigorous monitoring of evolving clinical manifestations. Diagnosis can occur at any age. These tumors are generally benign, but their size and location can have a significant impact on the prognosis and, in some cases, even on life expectancy. Cardiac, neurological, and cutaneous manifestations are most common in childhood. The onset of early and severe epilepsy within the first year of life is associated with neurodevelopmental disorders that impact the quality of life for affected individuals and their families. We present a case of a 22-year-old female patient experiencing inaugural epileptic seizures in adulthood, with magnetic resonance imaging revealing subependymal hamartomas, cortical tubers and radial migration bands accompanied by polycystic kidney disease; the diagnosis of tuberous sclerosis complex was established based on the association of these lesions, which constitute major and minor criteria.

2.
J Neurotrauma ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994598

RESUMO

Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.

3.
Exp Brain Res ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980339

RESUMO

The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.

4.
Genes Dis ; 11(5): 101021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39006182

RESUMO

Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.

5.
Cureus ; 16(5): e61454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947664

RESUMO

The cortical bone trajectory (CBT) technique has emerged as a minimally invasive approach for lumbar fusion but may result in pseudoarthrosis and hardware failure. This report presents a case of successful pedicle screw revision in a patient with previous failed L2 and L3 fusion using a novel "two-step" technique, including (1) drilling a new trajectory with Medtronic EM800N Stealth MIDAS Navigated MR8 drill system (Medtronic, Dublin, Ireland) and (2) placement of Solera 4.75 ATS (awl-tapped screws) with navigated POWEREASE™ (Medtronic), described here for the first time. This method involves utilizing neuronavigation and specialized instruments to safely place pedicle screws through the path of the old cortical screw trajectory, addressing the challenges associated with CBT hardware failure.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38953209

RESUMO

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

7.
J Comp Neurol ; 532(7): e25647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961708

RESUMO

Data mining was performed at the databases of the Allen Institute for Brain Science (RRID:SCR_017001) searching for genes expressed selectively throughout the adult mouse mesocortex (transitional cortex ring predicted within the concentric ring theory of mammalian cortical structure, in contrast with central isocortex [ICx] and peripheral allocortex). We aimed to explore a shared molecular profile selective of all or most mesocortex areas. This approach checks and corroborates the precision of other previous definitory criteria, such as poor myelination and high kainate receptor level. Another aim was to examine which cortical areas properly belong to mesocortex. A total of 34 positive adult selective marker genes of mesocortex were identified, jointly with 12 negative selective markers, making a total of 46 markers. All of them identify the same set of cortical areas surrounding the molecularly different ICx as well as excluding adjacent allocortex. Four representative mesocortex markers-Crym, Lypd1, Cdh13, and Smoc2-are amply illustrated, jointly with complementary material including myelin basic protein, to check myelination, and Rorb, to check layer 4 presence. The retrosplenial (ReSp) area, long held to be mesocortical, does not share any of the 46 markers of mesocortex and instead expresses Nr4a2 and Tshz2, selective parahippocampal allocortex markers. Moreover, it is not hypomyelinic and lacks a Rorb-positive layer 4, aspects generally present in mesocortex. Exclusion of the ReSp area from the mesocortex ring reveals the latter to be closed at this locus instead by two adjacent areas previously thought to be associative visual ICx (reidentified here molecularly as postsplenial and parasplenial mesocortex areas). The concepts of ICx, mesocortex, and parahippocampal allocortex are thus subtly modified by substantial molecular evidence.


Assuntos
Córtex Cerebral , Animais , Camundongos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Córtex Cerebral/química , Masculino , Camundongos Endogâmicos C57BL
8.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962882

RESUMO

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Assuntos
Axônios , Neocórtex , Vias Neurais , Tálamo , Animais , Tálamo/citologia , Tálamo/anatomia & histologia , Neocórtex/citologia , Neocórtex/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/anatomia & histologia , Axônios/fisiologia , Mamíferos/anatomia & histologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Especificidade da Espécie
9.
Ital J Pediatr ; 50(1): 123, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956699

RESUMO

BACKGROUND: Cortical visual impairment (CVI) is a verifiable visual dysfunction that cannot be attributed to disorders of the anterior visual pathways or any potentially co-occurring ocular impairment. Given the limited knowledge on the most effective interventions for visual impairment resulting from CVI, this case report provides valuable insights into an example of successful implementation of anti-amblyopia therapy in a patient with CVI. CASE PRESENTATION: This case report presents a 5-year-old girl with CVI secondary to hypoxic-ischemic injury, resulting in visual impairment, dyspraxia, and abnormal visual evoked potential testing. The girl did not suffer from amblyopia, there was no evidence of relevant refractive errors or strabismus, so visual pathway damage was the cause of her visual deficit. Nevertheless, the patient underwent anti-amblyopia therapy and showed significant improvement in visual acuity after 12 months of treatment. The improvement, resulting from visual stimulation, was due to a good functional recovery by a better usage of the damaged visual pathways. The therapy included prescribing corrective glasses and implementing secondary occlusion of the better eye for 4 months, which was protracted for another 4 months, leading to further improvements in visual acuity. CONCLUSIONS: The case report shows that addressing even minor refractive errors and implementing anti-amblyopia therapy can significantly improve vision in children with CVI, even without co-existing amblyopia. It also highlights the importance of early intervention and multidisciplinary rehabilitation in children with CVI, focusing on motor and cognitive skills. Additionally, it emphasizes the need for further research to establish evidence-based practice standards for improving vision in children with CVI.


Assuntos
Ambliopia , Acuidade Visual , Humanos , Feminino , Pré-Escolar , Ambliopia/terapia , Óculos , Cegueira Cortical/etiologia , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/terapia , Potenciais Evocados Visuais
10.
Brain Behav ; 14(7): e3582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956813

RESUMO

BACKGROUND/OBJECTIVES: Stroke damage to the primary visual cortex induces large, homonymous visual field defects that impair daily living. Here, we asked if vision-related quality of life (VR-QoL) is impacted by time since stroke. SUBJECTS/METHODS: We conducted a retrospective meta-analysis of 95 occipital stroke patients (female/male = 26/69, 27-78 years old, 0.5-373.5 months poststroke) in whom VR-QoL was estimated using the National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) and its 10-item neuro-ophthalmic supplement (Neuro10). Visual deficit severity was represented by the perimetric mean deviation (PMD) calculated from 24-2 Humphrey visual fields. Data were compared with published cohorts of visually intact controls. The relationship between VR-QoL and time poststroke was assessed across participants, adjusting for deficit severity and age with a multiple linear regression analysis. RESULTS: Occipital stroke patients had significantly lower NEI-VFQ and Neuro10 composite scores than controls. All subscale scores describing specific aspects of visual ability and functioning were impaired except for ocular pain and general health, which did not differ significantly from controls. Surprisingly, visual deficit severity was not correlated with either composite score, both of which increased with time poststroke, even when adjusting for PMD and age. CONCLUSIONS: VR-QoL appears to improve with time postoccipital stroke, irrespective of visual deficit size or patient age at insult. This may reflect the natural development of compensatory strategies and lifestyle adjustments. Thus, future studies examining the impact of rehabilitation on daily living in this patient population should consider the possibility that their VR-QoL may change gradually over time, even without therapeutic intervention.


Assuntos
Qualidade de Vida , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Estudos Retrospectivos , Transtornos da Visão/fisiopatologia , Transtornos da Visão/etiologia , Lobo Occipital/fisiopatologia , Campos Visuais/fisiologia
11.
Front Neurosci ; 18: 1428256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988764

RESUMO

Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson's disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.

12.
Healthcare (Basel) ; 12(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998859

RESUMO

After musculoskeletal injuries, there is often a loss of corticospinal control. Current tendon rehabilitation may not adequately address the corticospinal control of the muscle which may contribute to the recalcitrance of symptom recurrence. This review provides a summary of the current literature regarding the effectiveness of tempo-controlled resistance training (TCRT) in (1) promoting corticospinal plasticity, (2) improving physical performance, and (3) improving strength outcomes in healthy adults. A comprehensive literature search was conducted using electronic databases (PubMed, CINAHL, Embase, and Google Scholar) to identify relevant studies published between 2010 and 2023. Randomized control (RCT) studies that included recreationally trained and untrained healthy adults between 18 and 60 years of age and that compared a TCRT intervention to a control condition were included. Twelve of the 1255 studies identified in the initial search were included in the final analysis. Throughout all included studies, TCRT was shown to elicit greater neural adaptations compared to traditional resistance training methods (i.e., self-paced strength training). These results indicate that TCRT holds promise as an effective method for modulating corticospinal plasticity in healthy adults and may enhance neuromuscular adaptations, including improvements in CSE, decreased SICI, enhanced motor unit synchronization, and voluntary muscle activation.

13.
Proc Natl Acad Sci U S A ; 121(28): e2306800121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959037

RESUMO

Understanding the genesis of shared trial-to-trial variability in neuronal population activity within the sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since it likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in the mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory-inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells. Furthermore, our findings provide theoretical support for recent experimental observations showing that cortical inhibition forms structural and functional subnetworks with excitatory cells, in contrast to the classical view that inhibition is a nonspecific blanket suppression of local excitation.


Assuntos
Modelos Neurológicos , Rede Nervosa , Células Piramidais , Animais , Camundongos , Células Piramidais/fisiologia , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Córtex Visual Primário/fisiologia
14.
Front Hum Neurosci ; 18: 1338453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952645

RESUMO

Introduction: As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods: This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results: Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion: These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.

15.
Front Neurosci ; 18: 1373232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952924

RESUMO

Timbre is a central aspect of music that allows listeners to identify musical sounds and conveys musical emotion, but also allows for the recognition of actions and is an important structuring property of music. The former functions are known to be implemented in a ventral auditory stream in processing musical timbre. While the latter functions are commonly attributed to areas in a dorsal auditory processing stream in other musical domains, its involvement in musical timbre processing is so far unknown. To investigate if musical timbre processing involves both dorsal and ventral auditory pathways, we carried out an activation likelihood estimation (ALE) meta-analysis of 18 experiments from 17 published neuroimaging studies on musical timbre perception. We identified consistent activations in Brodmann areas (BA) 41, 42, and 22 in the bilateral transverse temporal gyri, the posterior superior temporal gyri and planum temporale, in BA 40 of the bilateral inferior parietal lobe, in BA 13 in the bilateral posterior Insula, and in BA 13 and 22 in the right anterior insula and superior temporal gyrus. The vast majority of the identified regions are associated with the dorsal and ventral auditory processing streams. We therefore propose to frame the processing of musical timbre in a dual-stream model. Moreover, the regions activated in processing timbre show similarities to the brain regions involved in processing several other fundamental aspects of music, indicating possible shared neural bases of musical timbre and other musical domains.

16.
Epileptic Disord ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953904

RESUMO

OBJECTIVE: Mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE) is a recently described, histopathologically and molecularly defined (SLC35A2-mutated) type of cortical malformation. Although increasingly recognized, the diagnosis of MOGHE remains a challenge. We present the characteristics of the first six patients diagnosed in Bulgaria, with the aim to facilitate identification, proper presurgical evaluation, and surgical treatment approach in this disease. METHODS: Revision of histopathological specimens of 202 patients operated on for drug-resistant focal epilepsy identified four cases with MOGHE. Another two were suggested, based on clinical characteristics and subsequently, were histologically confirmed. Sanger SLC35A2 sequencing on paraffin-embedded or fresh-frozen brain tissue was performed. Analysis of seizure types, neuropsychological profiles, electroencephalographic (EEG), imaging features and epilepsy surgery outcomes was done. RESULTS: Three out of the six cases (50%) harbored pathogenic SLC35A2 mutations. One patient had a heterozygous somatic variant with uncertain significance. Clinical characteristics included epilepsy onset in infancy (in 100% under 3 years of age), multiple seizure types, and moderate or severe intellectual/developmental delay. Epileptic spasms with hypsarrhythmia on EEG were the initial seizure type in five patients. The subsequent seizure types resembled those in Lennox-Gastaut syndrome. The majority of the patients (n = 4) presented prominent and persisting autistic features. Magnetic resonance imaging (MRI) showed multilobar (n = 6) and bilateral (n = 3) lesions, affecting the frontal lobes (n = 5; bilaterally in three) and characterized by increased signal on T2/fluid-attenuated inversion recovery (FLAIR). Voxel-based morphometric MRI post-processing and positron emission tomography helped determining the localization and extent of the lesions and presumed epileptogenic zones. After surgery, four patients (66.7%) were seizure-free ≥2 years. Interestingly, all seizure-free patients carried somatic SLC35A2-alterations. SIGNIFICANCE: Epileptic spasms, early prominent neuropsychological disturbances, MRI-T2/FLAIR hyperintense lesions with cortico-subcortical blurring, frequently multilobar and especially frontal, can preoperatively help to suspect MOGHE. Epilepsy surgery is still the only successful treatment option in MOGHE.

17.
Brain Struct Funct ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955860

RESUMO

The study of cortical cytoarchitectonics and the histology of the human cerebral cortex was pursued by many investigators in the second half of the nineteenth century, such as Jacob Lockhart Clarke, Theodor Meynert, and Vladimir Betz. Another of these pioneers, whose name has largely been lost to posterity, is considered here: Herbert Coddington Major (1850-1921). Working at the West Riding Asylum in Wakefield, United Kingdom, Major's thesis of 1875 described and illustrated six-layered cortical structure in both non-human primates and man, as well as "giant nerve cells" which corresponded to those cells previously described, but not illustrated, by Betz. Further journal publications by Major in 1876 and 1877 confirmed his finding of six cortical strata. However, Major's work was almost entirely neglected by his contemporaries, including his colleague and sometime pupil at the West Riding Asylum, William Bevan-Lewis (1847-1929), who later (1878) reported the presence of both pentalaminar and hexalaminar cortices. Bevan-Lewis's work was also later credited with the first illustration of Betz cells.

18.
Front Aging Neurosci ; 16: 1395911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974904

RESUMO

Background: Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods: The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results: The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion: Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.

19.
Heliyon ; 10(12): e32534, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975207

RESUMO

The human experience is significantly impacted by timing as it structures how information is processed. Nevertheless, the neurological foundation of time perception remains largely unresolved. Understanding cortical microstructure related to timing is crucial for gaining insight into healthy aging and recognizing structural alterations that are typical of neurodegenerative diseases associated with age. Given the importance, this study aimed to determine the brain regions that are accountable for predicting time perception in older adults using microstructural measures of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to measure time perception through average error time. We used support vector regression (SVR) analyses to predict the average error time using cortical neurite microstructures derived from orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance imaging (dMRI). We found significant correlations between observed and predicted average error times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial and lateral temporal lobes were among the most significant predictors of timing ability in older adults. Further, our results revealed that greater branching along with lower free water in cortical structures result in shorter average error times. Future studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment (MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia.

20.
J Neurochem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976626

RESUMO

DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA