Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Vaccine ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960787

RESUMO

OBJECTIVES: Leukemia cell-derived exosomes (LEXs), carrying leukemia cell-specific antigens, can serve as a source of antigen for dendritic cell (DC) vaccine loading. However, LEX-targeted DC-based vaccines have demonstrated limited antitumor immune effects in clinical trials, attributed to the low immunogenicity of LEXs and the scant levels of costimulatory molecules on DCs. The costimulatory molecules CD80 and CD86, which are crucial to DC function, play a significant role in enhancing immune efficacy. In this study, we explored the anti-leukemia immune response of costimulatory molecule gene-modified LEX-targeted DCs (LEX-8086) in vitro and in animal models. METHODS: DCs were incubated with LEX-8086 to produce LEX-8086-targeted DCs (DCsLEX-8086). ELISA, cytotoxicity assays and flow cytometry utilized to assess the antitumor efficacy of DCsLEX8086 in vitro. Flow cytometry was used to evaluate the immunomodulatory function of DCsLEX8086 in animal models. RESULTS: Our findings indicated that LEX-8086 enhanced the maturation and antigen-presenting ability of DCs. Immunization with DCsLEX8086 significantly activated CD8+ T cells and boosted the CTL response in vitro. More importantly, DCsLEX-8086 effectively suppressed tumor growth and exerted anti-leukemia effects in both prophylactic and therapeutic animal models. Furthermore, DCsLEX-8086 promoted the proportion of CD4+ T cells, CD8+ T cells and M1 macrophages in the tumor environments both prophylactically and therapeutically. Treatment with DCsLEX-8086 showed no significant difference in the levels of M2 macrophages but decreased the proportion of Tregs within the tumor bed during therapeutic experiments. CONCLUSION: The results suggested that DCsLEX-8086 induces a more effective anti-leukemia immunity compared to DCsLEX-null in vivo and in vitro. DCsLEX-8086 might achieve antitumor effects by elevating the numbers of CD4+ T cells, CD8+ T cells, and M1 macrophages in tumors. Our findings indicate that DCsLEX-8086 could be leveraged to develop a new, highly effective vaccine for anti-leukemia immunity.

2.
Front Immunol ; 15: 1424259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007147

RESUMO

Introduction: Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods: The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results: A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion: This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.


Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Microambiente Tumoral/imunologia , Feminino , Algoritmos , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Imunoterapia , Transcriptoma
3.
Trop Med Infect Dis ; 9(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787028

RESUMO

The cestode Echinococcus multilocularis, which mainly dwells in the liver, leads to a serious parasitic liver disease called alveolar echinococcosis (AE). Despite the increased attention drawn to the immunosuppressive microenvironment formed by hepatic AE tissue, the immunological characteristics of hepatic dendritic cells (DCs) in the AE liver microenvironment have not been fully elucidated. Here, we profiled the immunophenotypic characteristics of hepatic DC subsets in both clinical AE patients and a mouse model. Single-cell RNA sequencing (scRNA-Seq) analysis of four AE patient specimens revealed that greater DC numbers were present within perilesional liver tissues and that the distributions of cDC and pDC subsets in the liver and periphery were different. cDCs highly expressed the costimulatory molecule CD86, the immune checkpoint molecule CD244, LAG3, CTLA4, and the checkpoint ligand CD48, while pDCs expressed these genes at low frequencies. Flow cytometric analysis of hepatic DC subsets in an E. multilocularis infection mouse model demonstrated that the number of cDCs significantly increased after parasite infection, and a tolerogenic phenotype characterized by a decrease in CD40 and CD80 expression levels was observed at an early stage, whereas an activated phenotype characterized by an increase in CD86 expression levels was observed at a late stage. Moreover, the expression profiles of major immune checkpoint molecules (CD244 and LAG3) and ligands (CD48) on hepatic DC subsets in a mouse model exhibited the same pattern as those in AE patients. Notably, the cDC and pDC subsets in the E. multilocularis infection group exhibited higher expression levels of PD-L1 and CD155 than those in the control group, suggesting the potential of these subsets to impair T cell function. These findings may provide valuable information for investigating the role of hepatic DC subsets in the AE microenvironment and guiding DC targeting treatments for AE.

4.
Discov Immunol ; 3(1): kyad029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567291

RESUMO

Abatacept, a co-stimulatory blocker comprising the extracellular portion of human CTLA-4 linked to the Fc region of IgG1, is approved for the treatment of rheumatoid arthritis. By impairing the interaction between CD28 on T cells and CD80/CD86 on APCs, its mechanisms of action include the suppression of follicular T helper cells (preventing the breach of self-tolerance in B cells), inhibition of cell cycle progression holding T cells in a state described as 'induced naïve' and reduction in DC conditioning. However, less is known about how long these inhibitory effects might last, which is a critical question for therapeutic use in patients. Herein, employing a murine model of OVA-induced DTH, we demonstrate that the effect of abatacept is short-lived in vivo and that the inhibitory effects diminish markedly when treatment is ceased.

5.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629869

RESUMO

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Assuntos
Cromatos , Aprendizado de Máquina , Humanos , Estudos Transversais , Poluentes Ambientais , Masculino , Dano ao DNA , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores
6.
J Pers Med ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541064

RESUMO

The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.

7.
J Pharm Biomed Anal ; 242: 116034, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422671

RESUMO

T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.


Assuntos
Doenças Autoimunes , Imunoconjugados , Humanos , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Antígeno B7-2 , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Antígeno B7-1/metabolismo , Abatacepte
8.
Int Immunopharmacol ; 124(Pt A): 110893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669598

RESUMO

Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP. In this study, we explored the function of MSP activated-γδT cells in HCC. Results demonstrated that the proportions of γδT cells in the peripheral blood of HCC patients and the level of IFN-γ in the serum were higher than in healthy controls. We also determined that γδT cells can bind MSP protein. MSP-activated γδT cells were shown to contain a specific CDR3δ2 sequence that supports the recognition of MSP by γδT cells. We determined that MSP is highly expressed in HCC, MSP-activated γδT cells in the peripheral blood of HCC patients express co-stimulatory molecules, and MSP-activated γδT cells directly killed HCC cells. In conclusion, we demonstrated that the novel protein ligand MSP activated γδT cells, leading to the killing of HCC cells through direct and indirect mechanisms. These findings could provide a potential new target for the clinical diagnosis and treatment of HCC and a foundation for clinical treatment strategies in HCC.

9.
Front Oncol ; 13: 1200914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719008

RESUMO

Chimeric Antigen Receptor (CAR) T-cell therapies have emerged as an effective and potentially curative immunotherapy for patients with relapsed or refractory malignancies. Treatment with CD19 CAR T-cells has shown unprecedented results in hematological malignancies, including heavily refractory leukemia, lymphoma, and myeloma cases. Despite these encouraging results, CAR T-cell therapy faces limitations, including the lack of long-term responses in nearly 50-70% of the treated patients and low efficacy in solid tumors. Among other reasons, these restrictions are related to the lack of targetable tumor-associated antigens, limitations on the CAR design and interactions with the tumor microenvironment (TME), as well as short-term CAR T-cell persistence. Because of these reasons, we developed and tested a chimeric antigen receptor (CAR) construct with an anti-ROR1 single-chain variable-fragment cassette connected to CD3ζ by second and third-generation intracellular signaling domains including 4-1BB, CD28/4-1BB, ICOS/4-1BB or ICOS/OX40. We observed that after several successive tumor-cell in vitro challenges, ROR1.ICOS.OX40ζ continued to proliferate, produce pro-inflammatory cytokines, and induce cytotoxicity against ROR1+ cell lines in vitro with enhanced potency. Additionally, in vivo ROR1.ICOS.OX40ζ T-cells showed anti-lymphoma activity, a long-lasting central memory phenotype, improved overall survival, and evidence of long-term CAR T-cell persistence. We conclude that anti-ROR1 CAR T-cells that are activated by ICOS.OX40 tandem co-stimulation show in vitro and in vivo enhanced targeted cytotoxicity associated with a phenotype that promotes T-cell persistence.

10.
Biochem Biophys Rep ; 35: 101534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671389

RESUMO

The glutinous nest that builds by the saliva secretion of swiftlet is recognizable as an edible bird's nest (EBN). It enriched a medicinal value and was regarded as supplementary food that exerts various beneficial health effects, especially immune boosters. This study's objective was to determine the impact of EBN on the expression of MHC-II and costimulatory molecules (CD86 and CD80) related to the initiation of T-cell activation. Both rEBN and pEBN samples were prepared with simulated gastrointestinal digestion for enhancing the bioaccessibility of bioactive compounds. Our result showed that digested EBN samples slightly influence the upregulation of MHC-II, CD86, and CD80 in gene expression of LPS-stimulated Raw 264.7 cells. The concern of endotoxin contamination in EBN samples, which may cause a false-positive result, was measured by quantitative PCR. We found that the inflammatory genes (IL-1ß and TNF-α) were not induced by EBN treatments. Moreover, cell surface protein expression in splenocytes treated with EBN was assessed using flow cytometric analysis. Digested EBN samples demonstrated their capacity to promote the elevation of MHC-II, CD86, and CD80 cell surface protein expression. Finally, the digested-EBN-treated splenocytes only exhibited a specific response in the T-cells population. Thus, EBN is a source of the bioactive compound that has been proposed to exert a role in the stimulation of both MHC-II and costimulatory molecules for TCR/pMHC-II interaction leading to T-cell activation.

11.
Clin Chim Acta ; 548: 117501, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516334

RESUMO

BACKGROUND AND AIMS: Rheumatoid arthritis (RA) is a chronic autoimmune disease. RA-induced immunological responses are coordinated by T-cell stimulation. The costimulatory signal CD28-B7 is essential for T-cell activation by interacting CD28 with CD80 and CD86 costimulatory proteins. CTLA4 is another costimulatory protein that binds to CD80 and CD86 to inhibit T-cell activity. The soluble costimulatory proteins: sCD80, sCD86, sCD28, and sCTLA-4 were detected and quantified in human plasma and correlated with RA development. As potential diagnostic biomarkers for RA, developing a sensitive, specific, and reproducible method for quantifying these costimulatory molecules in human plasma and establishing quantitative ranges for each protein in healthy and RA patients' plasma is essential for advancing the clinical diagnostic and health outcomes. MATERIALS AND METHODS: A novel quantitative liquid chromatography-tandem spectrometry (LC-MS/MS) technique using multiple reaction monitoring (MRM) modes was developed and validated to measure soluble costimulatory molecules sCTLA4, sCD28, sCD80, and sCD86 in human plasma samples. Furthermore, the method was applied to determine sCTLA4, sCD28, sCD80, and sCD86 levels in plasma samples from RA patients (n = 23) and healthy controls (n = 21). RESULTS: The method was successfully developed and validated according to international inter- and intra-assay precision and accuracy guidelines. The linearity of the method was achieved between 0.5 nM and 100 nM for each protein with a correlation coefficient of > 0.998. The plasma level of sCTLA4, sCD80, and sCD86 in RA patients was significantly elevated compared to controls. RA patients had 63.32 ± 17.63 nM sCTLA4 and controls 36.05 ± 18.83 nM; p < 0.0001. The performance of the four proteins was determined using ROC curves, where sCTLA4 showed the highest diagnostic and clinical performance compared to the others. CONCLUSIONS: This study reports the first use of LC-MS/MS in MRM mode to accurately quantify soluble costimulatory molecules in plasma samples as potential RA diagnostic biomarkers. Determination of the reference range for each protein with high selectivity and sensitivity increases the potential for utilizing this method as a clinical diagnostic.


Assuntos
Artrite Reumatoide , Antígenos CD28 , Humanos , Antígenos CD , Antígeno B7-2 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antígeno B7-1/metabolismo , Fatores de Transcrição , Artrite Reumatoide/diagnóstico , Biomarcadores
12.
Artigo em Inglês | MEDLINE | ID: mdl-37171001

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) was one of the most common malignant cancers in the urinary system. Clear cell carcinoma (ccRCC) is the most common pathological type, accounting for approximately 80% of RCC. The lack of accurate and effective prognosis prediction methods has been a weak link in ccRCC treatment. Co-stimulatory molecules played the main role in increasing anti-tumor immune response, which determined the prognosis of patients. Therefore, the main objective of the present study was to explore the prognostic value of Co-stimulatory molecules genes in ccRCC patients. METHOD: The TCGA database was used to get gene expression and clinical characteristics of patients with ccRCC. A total of 60 Co-stimulatory molecule genes were also obtained from TCGA-ccRCC, including 13 genes of the B7/ CD28 Co-stimulatory molecules family and 47 genes of the TNF family. In the TCGA cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate a multigene signature. R and Perl programming languages were used for data processing and drawing. Real-time PCR was used to verify the expression of differentially expressed genes. RESULTS: The study's initial dataset included 539 ccRCC samples and 72 normal samples. The 13 samples have been eliminated. According to FDR<0.05, there were differences in the expression of 55 Co-stimulatory molecule genes in ccRCC and normal tissues. LASSO Cox regression analysis results indicated that 13 risk genes were optimally used to construct a prognostic model of ccRCC. The patients were divided into a high-risk group and a low-risk group. Those in the high-risk group had significantly lower OS (Overall Survival rate) than patients in the low-risk group. Receiver operating characteristic (ROC) curve analysis confirmed the predictive value of the prognosis model of ccRCC (AUC>0.7). There are substantial differences in immune cell infiltration between high and low-risk groups. Functional analysis revealed that immune-related pathways were enriched, and immune status was different between the two risk groups. Real-time PCR results for genes were consistent with TCGA DEGs. CONCLUSION: By stratifying patients with all independent risk factors, the prognostic score model developed in this study may improve the accuracy of prognosis prediction for patients with ccRCC.

13.
Pathogens ; 12(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111420

RESUMO

No human vaccine is available for visceral leishmaniasis (VL). Live attenuated centrin gene-deleted L. donovani (LdCen-/-) parasite vaccine has been shown to induce robust innate immunity and provide protection in animal models. Toll-like receptors (TLRs) are expressed in innate immune cells and are essential for the early stages of Leishmania infection. Among TLRs, TLR-9 signaling has been reported to induce host protection during Leishmania infection. Importantly, TLR-9 ligands have been used as immune enhancers for non-live vaccination strategies against leishmaniasis. However, the function of TLR-9 in the generation of a protective immune response in live attenuated Leishmania vaccines remains unknown. In this study, we investigated the function of TLR-9 during LdCen-/- infection and found that it increased the expression of TLR-9 on DCs and macrophages from ear-draining lymph nodes and spleen. The increase in TLR-9 expression resulted in changes in downstream signaling in DCs mediated through signaling protein myeloid differentiation primary response 88 (MyD88), resulting in activation and nuclear translocation of nuclear factor-κB (NF-κB). This process resulted in an increase in the DC's proinflammatory response, activation, and DC-mediated CD4+T cell proliferation. Further, LdCen-/- immunization in TLR-9-/- mice resulted in a significant loss of protective immunity. Thus, LdCen-/- vaccine naturally activates the TLR-9 signaling pathway to elicit protective immunity against virulent L. donovani challenge.

14.
J Exp Clin Cancer Res ; 42(1): 29, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691089

RESUMO

BACKGROUND: The applicability and therapeutic efficacy of specific personalized immunotherapy for cancer patients is limited by the genetic diversity of the host or the tumor. Side-effects such as immune-related adverse events (IRAEs) derived from the administration of immunotherapy have also been observed. Therefore, regulatory immunotherapy is required for cancer patients and should be developed. METHODS: The cationic lipo-PEG-PEI complex (LPPC) can stably and irreplaceably adsorb various proteins on its surface without covalent linkage, and the bound proteins maintain their original functions. In this study, LPPC was developed as an immunoregulatory platform for personalized immunotherapy for tumors to address the barriers related to the heterogenetic characteristics of MHC molecules or tumor associated antigens (TAAs) in the patient population. Here, the immune-suppressive and highly metastatic melanoma, B16F10 cells were used to examine the effects of this platform. Adsorption of anti-CD3 antibodies, HLA-A2/peptide, or dendritic cells' membrane proteins (MP) could flexibly provide pan-T-cell responses, specific Th1 responses, or specific Th1 and Th2 responses, depending on the host needs. Furthermore, with regulatory antibodies, the immuno-LPPC complex properly mediated immune responses by adsorbing positive or negative antibodies, such as anti-CD28 or anti-CTLA4 antibodies. RESULTS: The results clearly showed that treatment with LPPC/MP/CD28 complexes activated specific Th1 and Th2 responses, including cytokine release, CTL and prevented T-cell apoptosis. Moreover, LPPC/MP/CD28 complexes could eliminate metastatic B16F10 melanoma cells in the lung more efficiently than LPPC/MP. Interestingly, the melanoma resistance of mice treated with LPPC/MP/CD28 complexes would be reversed to susceptible after administration with LPPC/MP/CTLA4 complexes. NGS data revealed that LPPC/MP/CD28 complexes could enhance the gene expression of cytokine and chemokine pathways to strengthen immune activation than LPPC/MP, and that LPPC/MP/CTLA4 could abolish the LPPC/MP complex-mediated gene expression back to un-treatment. CONCLUSIONS: Overall, we proved a convenient and flexible immunotherapy platform for developing personalized cancer therapy.


Assuntos
Melanoma , Polímeros , Animais , Camundongos , Citocinas/metabolismo , Imunoterapia , Lipossomos/química
15.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304104

RESUMO

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

16.
Front Immunol ; 14: 1331796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38361527

RESUMO

Introduction: Autoimmune diseases result from the loss of immune tolerance, and they exhibit complex pathogenic mechanisms that remain challenging to effectively treat. It has been reported that the altered expression levels of co-stimulatory/inhibitory molecules will affect the level of T/B cell activation and lead to the loss of immune tolerance. Methods: In this study, we evaluated the gene polymorphisms of the ligand genes corresponding co-stimulatory system that were expressed on antigen-presenting cells (CD80, CD86, ICOSLG, and PDL1) from 60 systemic lupus erythematosus (SLE) patients and 60 healthy controls. Results: The results showed that rs16829984 and rs57271503 of the CD80 gene and rs4143815 of the PDL1 gene were associated with SLE, in which the G-allele of rs16829984 (p=0.022), the A-allele of rs57271503 (p=0.029), and the GG and GC genotype of rs4143815 (p=0.039) may be risk polymorphisms for SLE. Discussion: These SNPs are in the promoter and 3'UTR of the genes, so they may affect the transcription and translation activity of the genes, thereby regulating immune function and contributing to the development of SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Polimorfismo de Nucleotídeo Único , Humanos , Lúpus Eritematoso Sistêmico/genética , Genótipo , Antígeno B7-1/genética , Alelos
17.
Front Immunol ; 13: 1021452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479124

RESUMO

Ischemia-reperfusion (I/R) injury is a type of pathological injury that commonly arises in various diseases. Various forms of immune response are involved in the process of I/R injury. As a member of the B7 costimulatory molecule family, programmed death 1-ligand 1 (PD-L1) is an important target for immune regulation. Therefore, PD-L1 may be implicated in the regulation of I/R injury. This review briefly describes the immune response during I/R injury and how PD-L1 is involved in its regulation by focusing on findings from various I/R models. Despite the limited number of studies in this field of research, PD-L1 has shown sufficient potential as a clinical therapeutic target.


Assuntos
Antígeno B7-H1 , Traumatismo por Reperfusão , Humanos , Ligantes
18.
Front Immunol ; 13: 1043484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466863

RESUMO

Previous studies demonstrated that CD4+ T cells can uptake tumor antigen-pulsed dendritic cell-derived exosomes (DEXO), which harbor tumor antigen peptide/pMHC I complex and costimulatory molecules and show potent effects on inducing antitumor immunity. However, in preliminary study, CD4+ T cells targeted by leukemia cell-derived exosomes (LEXs) did not show the expected effects in inducing effective anti-leukemia immunity, indicating that LEX is poorly immunogenetic largely due to an inadequate costimulatory capacity. Therefore, LEX-based anti-leukemia vaccines need to be optimized. In this study, we constructed a novel LEX-based vaccine by combining CD4+ T cells with costimulatory molecules gene-modified LEXs, which harbor upregulated CD80 and CD86, and the anti-leukemia immunity of CD80 and CD86 gene-modified LEX-targeted CD4+ T cells was investigated. We used lentiviral vectors encoding CD80 and CD86 to successfully transduced the L1210 leukemia cells, and the expression of CD80 and CD86 was remarkably upregulated in leukemia cells. The LEXs highly expressing CD80 and CD86 were obtained from the supernatants of gene-transduced leukemia cells. Our data have shown that LEX-CD8086 could promote CD4+ T cell proliferation and Th1 cytokine secretion more efficiently than control LEXs. Moreover, CD4+ TLEX-CD8086 expressed the acquired exosomal costimulatory molecules. With acquired costimulatory molecules, CD4+ TLEX-CD8086 can act as APCs and are capable of directly stimulating the leukemia cell antigen-specific CD8+ CTL response. This response was higher in potency compared to that noted by the other formulations. Furthermore, the animal study revealed that the CD4+ TLEX-CD8086 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice than other formulations did in both protective and therapeutic models. In conclusion, this study revealed that CD4+ TLEX-CD8086 could effectively induce more potential anti-leukemia immunity than LEX-CD8086 alone, suggesting that the utilization of a costimulatory molecule gene-modified leukemia cell-derived exosome-targeted CD4+ T cell vaccine may have promising potential for leukemia immunotherapy.


Assuntos
Exossomos , Leucemia , Vacinas , Animais , Camundongos , Linfócitos T , Exossomos/genética , Leucemia/genética , Leucemia/terapia , Antígeno B7-1/genética , Fatores de Transcrição , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos
19.
J Neuroimmunol ; 372: 577955, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36054935

RESUMO

OBJECTIVES: To investigate the expression and possible role of soluble costimulatory molecules in the treatment of refractory myasthenia gravis. METHODS: Thirty-two patients with refractory myasthenia gravis were enrolled into this study and given tacrolimus 3 mg/day. At the beginning of treatment and 12 months follow-up period, clinical data were collected and recorded. The clinical classification of myasthenia gravis Foundation (MGFA) was performed. The MGFA-quantitative myasthenia gravis score (MGFA-QMGS), manual muscle test (MMT), MG activity of daily living (MG-ADL) and the activity of daily living (MG-ADL), the 15-item myasthenia gravis quality of life (MG QOL-15) and the dose change of prednisone were used to evaluate the efficacy. The expression levels of soluble costimulatory molecules and their ligands (sPD-1/sPD-L1, sICOS/sICOSL, sCD40/sCD40L), soluble CD25 and IL-2 in serum were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: We observed that oral administration of 3 mg tacrolimus daily for 1 year can significantly improve the clinical symptoms of patients with refractory myasthenia gravis, which is characterized by a significant reduction in clinical scores, such as QMG, MMT, ADL, MGQOL-15, and a reduction daily oral prednisolone (PSL) dose (P < 0.0001).We also found that the levels of plasma sPD-1, sCD40, IL-2 in refractory MG patients increased significantly, and those decreased significantly 12 months after tacrolimus treatment (P < 0.05). The level of sCD25 was negatively correlated with clinical severity scores (P < 0.05). After tacrolimus treatment, the level of sPD-L1 increased although there was no significant difference. CONCLUSION: Tacrolimus could relieve the symptoms of refractory MG and significantly decrease the levels of plasma sPD-1, sICOSL, sCD40, sCD25 and IL-2. Soluble costimulatory molecules might be potential biomarkers for MG and tacrolimus treatment.


Assuntos
Miastenia Gravis , Tacrolimo , Humanos , Interleucina-2 , Miastenia Gravis/tratamento farmacológico , Prednisolona/uso terapêutico , Prednisona/uso terapêutico , Qualidade de Vida , Tacrolimo/uso terapêutico , Fatores de Transcrição
20.
Biomolecules ; 12(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883511

RESUMO

A key aspect of the inflammatory phenomenon is the involvement of costimulatory molecules expressed by antigen-presenting cells (APCs) and their ability to secrete cytokines to set instructions for an adaptive immune response and to generate tolerance or inflammation. In a novel integrative approach, we aimed to evaluate the kinetic expression of the membrane and soluble B7 costimulatory molecules CD86, ICOS-L, PDL1, PDL2, the transcription factor Interferon Regulatory Factor 4 (IRF4), and the cytokines produced by monocyte-derived dendritic cells (Mo-DCs) after challenging them with different concentrations of stimulation with E. coli lipopolysaccharide (LPS) for different lengths of time. Our results showed that the stimuli concentration and time of exposure to an antigen are key factors in modulating the dynamic expression pattern of membrane and soluble B7 molecules and cytokines.


Assuntos
Antígeno B7-1 , Lipopolissacarídeos , Antígenos B7/metabolismo , Antígeno B7-1/metabolismo , Citocinas/metabolismo , Células Dendríticas , Escherichia coli/metabolismo , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA