Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 37(3)2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39348860

RESUMO

Motivated by the experiment of electrostatic conveyor belt for indirect excitons (Winbowet al2011Phys. Rev. Lett.106196806), we studied the exciton patterns for understanding the exciton dynamics. By analyzing the exciton diffusion, we found that the patterns mainly came from the photoluminescence of two kinds of excitons. The patterns near the laser spot came from the hot excitons which can be regarded as the classical particles. However, the patterns far from the laser spot come from the cooled or coherent excitons. Considering the finite lifetime of Bosonic excitons and of the interactions between them, we built a time-dependent nonlinear Schrödinger equation including the non-Hermitian dissipation to describe the coherent exciton dynamics. The real-time and imaginary-time evolutions were used alternately to solve the Schrödinger equation to simulate the exciton diffusion accompanied by the exciton cooling in the moving lattices. By calculating the escape probability, we obtained the transport distances of the coherent excitons in the conveyor, consistent with the experimental data. The cooling speed of excitons was found to be important in coherent exciton transport. Moreover, the plateau in the average transport distance cannot be explained by the dynamical localization-delocalization transition induced by the disorders.

2.
Heliyon ; 10(6): e28169, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560699

RESUMO

In this study, we report theoretically the effect of well, barrier widths and polarization on optical properties of intersubband transitions (ISBT) in CdSe/MgSe asymmetric quantum wells (ADQWs). Eigenenergies and their corresponding wave functions have been calculated by solving numerically the Schrödinger equation. The second harmonic generation and the optical rectification including intersubband transition energies have been discussed. Obtained results revealed that intersubband transition depends strongly on the quantum wells and the barrier widths as well as the stark effect. With appropriate intensity, optical rectification can reach great magnitude. We hope that the numerical results of our research are valuable theoretically and experimentally to our scientific community in nonlinear optics.

3.
Nanomaterials (Basel) ; 13(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570530

RESUMO

In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in the interwell barriers is greater than or equal to the In content in the external barriers. To calculate the electronic subbands in these nanostructures, we use the eight-band k∙p Hamiltonian, assuming that the effective spin-orbit interaction in InN is negative, which represents the worst-case scenario for achieving a two-dimensional topological insulator. For triple quantum wells, we find that when the In contents of the external and interwell barriers are the same and the widths of the internal barriers are equal to two monolayers, a topological insulator with a bulk energy gap of 0.25 meV can appear. Increasing the In content in the interwell barriers leads to a significant increase in the bulk energy gap of the topological insulator, reaching about 0.8 meV. In these structures, the topological insulator can be achieved when the In content in the external barriers is about 0.64, causing relatively low strain in quantum wells and making the epitaxial growth of these structures within the range of current technology. Using the effective 2D Hamiltonian, we study the edge states in strip structures containing topological triple quantum wells. We demonstrate that the opening of the gap in the spectrum of the edge states caused by decreasing the width of the strip has an oscillatory character regardless of whether the pseudospin-mixing elements of the effective Hamiltonian are omitted or taken into account. The strength of the finite size effect in these structures is several times smaller than that in HgTe/HgCdTe and InAs/GaSb/AlSb topological insulators. Therefore, its influence on the quantum spin Hall effect is negligible in strips with a width larger than 150 nm, unless the temperature at which electron transport is measured is less than 1 mK. In the case of quadruple quantum wells, we find the topological insulator phase only when the In content in the interwell barriers is larger than in the external barriers. We show that in these structures, a topological insulator with a bulk energy gap of 0.038 meV can be achieved when the In content in the external barriers is about 0.75. Since this value of the bulk energy gap is very small, quadruple quantum wells are less useful for realizing a measurable quantum spin Hall system, but they are still attractive for achieving a topological phase transition and a nonlocal topological semimetal phase.

4.
ACS Nano ; 16(9): 15339-15346, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36069715

RESUMO

Long-lived indirect excitons (IXs) exhibit a rich phase diagram, including a Bose-Einstein condensate (BEC), a Wigner crystal, and other exotic phases. Recent experiments have hinted at a "classical" liquid of IXs above the BEC transition. To uncover the nature of this phase, we use a broad range of theoretical tools and find no evidence of a driving force toward classical condensation. Instead, we attribute the condensed phase to a quantum electron-hole liquid (EHL), first proposed by Keldysh for direct excitons. Taking into account the association of free carriers into bound excitons, we study the phase equilibrium between a gas of excitons, a gas of free carriers, and an EHL for a wide range of electron-hole separations, temperatures, densities, and mass ratios. Our results agree reasonably well with recent measurements of GaAs/AlGaAs coupled quantum wells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA