RESUMO
BACKGROUND: The transcription product of tramtrack (ttk) is an important transcription factor which plays many roles in the regulation of the development, differentiation and chromosome recombination of organisms. Few studies have been reported on the specific functions of ttk in other insects except Drosophila melanogaster. Our aims are to reveal the ttk effects on development and courtship of male rice pest brown planthopper (BPH), Nilaparvata lugens. RESULTS: In this study, we first assayed spatiotemporal expression of ttk in BPH, then treated the fourth nymphs of BPH with dsttk. We found most individuals died before emerging to adults, the adult eclosion rate was only 18.89%. No courtship behavior was found in individuals injected with dsttk. Further research showed that the main frequency of courtship vibration signal (CVS) 431.3 Hz in the individuals injected with dsttk was significantly higher than 223 Hz in the individuals injected with dsGFP, and female adults nearly had no response to the 431.3 Hz CVS. CONCLUSION: We found that about 81% of the 4-instar nymphs of BPH treated with dsttk died before they emerged as adults, the successfully emerged adults emitted the 431.3 Hz CVS to which female adults did not respond and lost the ability of courtship. This was first finding about the functions of ttk in rice planthopper and illustrated the potential of ttk as target for RNAi to control rice planthopper. © 2024 Society of Chemical Industry.
RESUMO
BACKGROUND: Vibrational signal plays a crucial role in courtship communication in many insects. However, it remains unclear whether insect vibrational signals exhibit daily rhythmicity in response to changes in environmental cues. RESULTS: In this study, we observed daily rhythms of both female vibrational signals (FVS) and male vibrational signals (MVS) in the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most notorious rice pests across Asia. Notably, oscillations of FVS and MVS in paired BPHs were synchronized as part of male-female duetting interactions, displaying significant day-night rhythmicity. Furthermore, we observed light dependency of FVS emissions under different photoperiodic regimes (18 L:6 D and 6 L:18 D) and illumination intensity levels (>300 lx, 50 lx, and 25 lx). Subsequently, the potential role of circadian clock genes cryptochromes (Nlcry1 and Nlcry2) in regulating FVS daily oscillations was examined using gene knockdown via RNA interference. We observed sharp declines and disrupted rhythms in FVS frequencies when either of the Nlcrys was downregulated, with Nlcry2 knockdown showing a more prominent effect. Moreover, we recorded a novel FVS variant (with a dominant frequency of 361.76 ± 4.31 Hz) emitted by dsNlcry1-treated BPH females, which significantly diminished the impact of courtship stimuli on receptive males. CONCLUSION: We observed light-dependent daily rhythms of substrate-borne vibrational signals (SBVS) in BPH and demonstrated essential yet distinct roles of the two Nlcrys. These findings enhanced our understanding of insect SBVS and illustrated the potential of novel precision physical control strategies for disrupting mating behaviors in this rice pest. © 2023 Society of Chemical Industry.