Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Colloid Interface Sci ; 679(Pt A): 324-334, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39366262

RESUMO

Wearable piezoelectric nanogenerators (PENGs) are increasingly significant in healthcare and energy harvesting applications due to their ability to convert mechanical energy into electrical signals. In this study, we developed PENGs by incorporating crab shell powder (CS-NFs) into electrospun polyvinylidene fluoride (PVDF) nanofibers to enhance their piezoelectric properties. The PVDF-CS-NFs (PC-NFs) composites were evaluated for structural, thermal, and piezoelectric performance. The 1.5 wt% CS-NFs composite exhibited a notable improvement, with a maximum output voltage of 19 V under mechanical deformation, significantly higher than pristine PVDF NFs. Furthermore, the device demonstrated excellent sensitivity in real-time respiratory monitoring when applied to various body locations, including the chest, throat, and mask. Additionally, the PC-NFs-based PENGs were capable of charging a 2.2 µF capacitor to 2 V within 180 s and powering 56 LEDs. These results underscore the potential of using sustainable crab shell waste in biocompatible, eco-friendly piezoelectric devices for wearable sensors and energy harvesting applications.

2.
Carbohydr Polym ; 345: 122565, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227120

RESUMO

A green protocol to extract chitin from crab shells using water soluble ionic liquids (ILs) is here reported. Compared to conventional multistep acid-base extraction methods, this one-pot procedure achieves pulping of recalcitrant crustacean waste shells by employing ammonium acetate, ammonium formate and hydroxylammonium acetate as water-soluble, low-cost and easy to prepare ILs. An extensive parametric analysis of the pulping process has been carried out with different ILs, different ratios, temperature and time. The optimized protocol provides a high-quality chitin comparable, if not better, to commercial chitin. The best results were obtained at 150 °C with ammonium formate prepared in-situ from aqueous ammonia and formic acid: chitin was isolated in a 17 wt% yield (based on dried crab shells as starting biowaste), a degree of acetylation (DA) > 94 %, a crystallinity index of 39-46 %, a molecular weight up to 6.6 × 105 g/mol and a polydispersity of ca 2.0.


Assuntos
Exoesqueleto , Braquiúros , Quitina , Animais , Quitina/química , Quitina/isolamento & purificação , Exoesqueleto/química , Braquiúros/química , Líquidos Iônicos/química , Química Verde/métodos , Acetilação , Temperatura , Formiatos/química , Aranhas/química
3.
Environ Geochem Health ; 46(8): 283, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963423

RESUMO

Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.


Assuntos
Carvão Vegetal , Nanocompostos , Fosfatos , Poluentes Químicos da Água , Carvão Vegetal/química , Nanocompostos/química , Poluentes Químicos da Água/química , Fosfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Cálcio/química , Purificação da Água/métodos , Águas Residuárias/química
4.
Chemosphere ; 353: 141503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382718

RESUMO

Recently, water contamination caused by the misuse of antibiotics has become a growing concern. In this study, an economical chitin/calcite composite (CCA) was extracted from crab shell waste, and the effects and mechanisms of its removal of ciprofloxacin (CIP) and tetracycline (TC) from aqueous solution were investigated. The functional groups of chitin and the metal phase of calcite gave CCA the ability to remove antibiotics. Experiments on kinetics, isothermal adsorption, thermodynamics, co-removal, and reusability were conducted to systematically explore the adsorption performances of CCA toward antibiotics. The pseudo-second-order (FSO) and Langmuir models suited the data obtained from experiments best and displayed a good fit for the chemisorption and a certain homogeneity of adsorption sites. At 25 °C, the maximum adsorption capacities (Qmax) toward CIP and TC were 228.86 and 150.76 mg g-1, respectively. The adsorption mechanisms of CCA with TC and CIP are pH dependent since pH can affect the surface charge of CCA and the form in which CIP and TC are existing. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) demonstrated that the keto-O and carboxyl groups of CIP and the carbonyl, hydroxyl, and amido groups of TC could be responsible for the binding with the calcite and the functional groups of chitin through surface complexation, cation bridge and hydrogen bonding.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carbonato de Cálcio , Quitina , Antibacterianos/química , Tetraciclina/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063738

RESUMO

A novel nanoporous adsorbent was obtained through the thermal treatment and chemical wash of the wasted crab shells (BC1) and characterized by various techniques. The structure of BC1 at the end of the treatments comprised a mixture of calcite and amorphous CaCO3, as evidenced by X-ray diffraction and Fourier transform infrared absorption. The BET surface area, BET pore volume, and pore diameter were 250.33 m2 g-1, 0.4 cm3 g-1, and <70 nm, respectively. The point of zero charge of BC1 was determined to be around pH 9. The prepared adsorbent was tested for its adsorption efficacy towards the neonicotinoid pesticide acetamiprid. The influence of pH (2-10), temperature (20-45 °C), adsorbent dose (0.2-1.2 g L-1), contact time (5-60 min), and initial pesticide concentration (10-60 mg L-1) on the adsorption process of acetamiprid on BC1 was studied. The adsorption capacity of BC1 was 17.8 mg g-1 under optimum conditions (i.e., 20 mg L-1 initial acetamiprid concentration, pH 8, 1 g L-1 adsorbent dose, 25 °C, and 15 min contact time). The equilibrium data obtained from the adsorption experiment fitted well with the Langmuir isotherm model. We developed an effective nanoporous adsorbent for the recycling of crab shells which can be applied on site with minimal laboratory infrastructure according to local needs.

6.
Environ Res ; 239(Pt 1): 117227, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778609

RESUMO

Excessive phosphate and tetracycline (TC) contaminants pose a serious risk to human health and the ecological environment. As such exploring the simultaneous adsorption of phosphate and TC is garnering increasing attention. In this study, an efficient lanthanum ferrate magnetic biochar (FLBC) was synthesised from crab shells using an ultrasound-assisted sol-gel method to study its performance and mechanisms for phosphate and TC adsorption in aqueous solutions in mono/bis systems. According to the Langmuir model, the developed exhibited a maximum adsorption capacity of 65.62 mg/g for phosphate and 234.1 mg/g for TC (pH:7.0 ± 0.1, and 25 °C). Further, it exhibited high resistance to interference and pH suitability. In practical swine wastewater applications, whereby the concentrations of phosphate and TC are 37 and 19.97 mg/L, respectively, the proposed material demonstrated excellent performance. In addition, electrostatic adsorption, chemical precipitation and ligand exchange were noted to be the main mechanisms for phosphate adsorption by FLBC, whereas hydrogen bonding and π-π interaction were the main adsorption mechanisms for TC adsorption. Therefore, this study successfully prepared a novel and efficient adsorbent for phosphate and TC.


Assuntos
Fosfatos , Pirólise , Humanos , Animais , Suínos , Tetraciclina , Antibacterianos , Fenômenos Magnéticos
7.
Bioresour Technol ; 390: 129900, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866771

RESUMO

Detoxifying ecologically persistent dyes is vital for environmental and human well-being. Herein, crabshell waste is transformed into porous carbon (CB900) through pyrolysis, achieving a remarkable removal rate of 90.5% (CR-RR) and adsorption capacity (∼256.36 mg g-1, qCR). Employing XGBoost modeling, with a robust R2 âˆ¼0.996, proved its superiority over others in predicting CR adsorption. PSO-XGB optimization led to an optimal configuration: 0.051 g adsorbent, 460.56 mg L-1 CR concentration, pH 3.16, and a 94.01 min contact time, resulting in 68.39% CR-RR and 822.15 mg g-1 qCR, simultaneously; sensitivity analysis unveiled the pivotal role of pH and adsorbent dose. CB900 exhibited physical, spontaneous, endothermic following both Langmuir and Freundlich isotherms. Remarkably, CB900 effectively eliminated various contaminants, including chromium and sulfasalazine antibiotic. Pilot-scale CB900 production cost via pyrolysis was $8.5/kg, a fraction of commercial powdered activated carbon, underscoring its economic viability and potential as a sustainable solution for the elimination of toxic contaminants from aqueous environments.


Assuntos
Braquiúros , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Carvão Vegetal , Poluentes Químicos da Água/análise , Cinética , Purificação da Água/métodos , Adsorção , Cromo , Concentração de Íons de Hidrogênio
8.
Biomimetics (Basel) ; 8(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504211

RESUMO

Southern King Crab (SKC) represents an important fishery resource that has the potential to be a natural source of chitosan (CS) production. In tissue engineering, CS is very useful to generate biomaterials. However, CS has a lack of signaling molecules that facilitate cell-substrate interaction. Therefore, RGD (arginine-glycine-aspartic acid) peptides corresponding to the main integrin recognition site in extracellular matrix proteins have been used to improve the CS surface. The aim of this study was to evaluate in vitro cell adhesion and proliferation of CS films synthesized from SKC shell wastes functionalized with RGD peptides. The FTIR spectrum of CS isolated from SKC shells (SKC-CS) was comparable to commercial CS. Thermal properties of films showed similar endothermic peaks at 53.4 and 53.0 °C in commercial CS and SKC-CS, respectively. The purification and molecular masses of the synthesized RGD peptides were confirmed using HPLC and ESI-MS mass spectrometry, respectively. Mouse embryonic fibroblast cells showed higher adhesion on SKC-CS (1% w/v) film when it was functionalized with linear RGD peptides. In contrast, a cyclic RGD peptide showed similar adhesion to control peptide (RDG), but the highest cell proliferation was after 48 h of culture. This study shows that functionalization of SKC-CS films with linear or cyclic RGD peptides are useful to improve effects on cell adhesion or cell proliferation. Furthermore, our work contributes to knowledge of a new source of CS to synthesize constructs for tissue engineering applications.

9.
Foods ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900558

RESUMO

In this study, three mesoporous-activated crab shell biochars were prepared by carbonation and chemical activation with KOH (K-CSB), H3PO4 (P-CSB), and KMnO4 (M-CSB) to evaluate their tetracycline (TC) adsorption capacities. Characterization by SEM and a porosity analysis revealed that the K-CSB, P-CSB, and M-CSB possessed a puffy, mesoporous structure, with K-CSB exhibiting a larger specific surface area (1738 m2/g). FT-IR analysis revealed that abundant, surface ox-containing functional groups possessed by K-CSB, P-CSB, and M-CSB, such as -OH, C-O, and C=O, enhanced adsorption for TC, thereby enhancing their adsorption efficiency for TC. The maximum TC adsorption capacities of the K-CSB, P-CSB, and M-CSB were 380.92, 331.53, and 281.38 mg/g, respectively. The adsorption isotherms and kinetics data of the three TC adsorbents fit the Langmuir and pseudo-second-order model. The adsorption mechanism involved aperture filling, hydrogen bonding, electrostatic action, π-π EDA action, and complexation. As a low-cost and highly effective adsorbent for antibiotic wastewater treatment, activated crab shell biochar has enormous application potential.

10.
Huan Jing Ke Xue ; 44(2): 975-983, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775620

RESUMO

The combined pollution of heavy metal Cu and Cd in soil induced by the e-waste dismantling process has become a severe problem. To deal with this issue, crab shell biochar (BC) and Mn/Al-layered double oxide-loaded crab shell biochar (LDO/BC) were prepared using coprecipitation and co-pyrolysis of discarded crab shells and manganese aluminum salt. The experimental results showed that not only were the soil pH, available phosphorus, available potassium, and soil enzymatic activity enhanced, but the contents of DTPA-Cu and DTPA-Cd in the soil were also reduced after remediation by BC and LDO/BC. Microbial community analysis indicated that BC-1% could promote the relative abundance of Gemmatimonadota and Acidobacteriota; meanwhile, LDO/BC-1% could promote the relative abundance of Proteobacteria, which could reduce the accumulation of Cd in plants. Ryegrass was planted for further investigating the toxic effect of heavy metals in soil after remediation. The results demonstrated that after remediating with BC-5% and LDO/BC-1%, ryegrass grew more vigorously and with a lower content of the heavy metals Cu and Cd in the plants than that of CK, and the germination rate increased by 29% and 60%, respectively. Further, LDO/BC-1% had a more excellent remediation performance than that of the other groups, and the Mn in LDO/BC could reduce the content of heavy metal Cd adsorbed by ryegrass in soil.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cádmio/química , Óxidos/toxicidade , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Ácido Pentético
11.
Int J Biol Macromol ; 234: 122974, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566808

RESUMO

To promote natural waste resource utilization, a novel biocomposite, composed of waste crab shells and poly (lactic acid) matrix, was developed by combining chemical treatment and 3D printing. A crab shell powder (ISCSP) with an abundant porous structure and a high specific surface area was obtained by treatment with hydrochloric acid and sodium hydroxide. Importantly, under the optimal printing parameters determined by the finite element analysis, test samples, and porous bones were successfully printed using CSP/PLA composites by a commercial fused deposition modeling (FDM) 3D printer. The morphology, mechanical and thermal properties, antibacterial properties, and biocompatibility of the CSP/PLA composites were then assessed. Our results revealed that the tensile strength and flexural strength of the ISCSP/PLA composites reached 58.71 and 90.11 MPa, which were 28.6 % and 28.8 % higher than that of pure PLA, respectively. The glass transition and melting temperatures of the composites remained similar to those of pure PLA. Interestingly, the addition of CSP increased PLA crystallinity, which could be attributed to the nucleation effect of CSP in the system. The antibacterial activity of the PLA-1.5ESCSP composite samples against Escherichia coli (E. coli) was greater than 99 %. More importantly, the live/dead assay showed that the CSP/PLA composites possessed excellent biocompatibility. Therefore, the developed CSP/PLA biocomposites are potential feedstocks for 3D printing in bone tissue engineering and may be used as graft substitutes in reparative and reconstructive surgery. They are especially beneficial due to their superior mechanical and thermal properties, excellent antibacterial activities, and significant biocompatibility.


Assuntos
Braquiúros , Animais , Escherichia coli , Impressão Tridimensional , Antibacterianos/farmacologia , Poliésteres , Ácido Láctico
12.
Foods ; 13(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201102

RESUMO

The amount of processed by-products such as crab shells is increasing, but industrial utilization is insufficient. In our previous study, crab shell extract (CSE) acted as a coagulant for tofu manufacturing. This study aimed to reduce freeze-dried (FD) tofu breakdown by improving its physical properties through adding sodium alginate (SA). FD state in tofu helps increase storage and availability, but FD tofu frequently fractures during processing, which is a concern for manufacturers. Tofu samples were prepared with either crab shell extract (CSE) or MgCl2, and SA, and freeze-dried. In the yields of FD tofu samples, there were no significant differences (p < 0.05). The brokenness of FD tofu samples was lower in CSE than in MgCl2 and was significantly reduced by SA in both tofu samples, which was affected by hardness. The water-holding capacity decreased after freeze-drying, and CSE reduced this decrease, regardless of SA addition. The microstructures differed depending on the coagulant and were dense upon SA addition. The FD tofu was packed into a multilayer film and stored at 25 °C or 45 °C for 6 months to investigate storage stability. During the storage, brokenness was unchanged in all tofu samples, indicating that they maintained their original structure. There were no significant differences in the volatile base nitrogen and thiobarbituric acid values according to the coagulant type and SA addition (p < 0.05). In conclusion, SA reduced FD tofu breakdown by improving the network structure, which may help increase FD tofu quality and decrease economic loss.

13.
Microb Cell Fact ; 21(1): 141, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842620

RESUMO

BACKGROUND: There are substantial environmental and health risks associated with the seafood industry's waste of crab shells. In light of these facts, shellfish waste management is critical for environmental protection against hazardous waste produced from the processing industries. Undoubtedly, improved green production strategies, which are based on the notion of "Green Chemistry," are receiving a lot of attention. Therefore, this investigation shed light on green remediation of the potential hazardous crab shell waste for eco-friendly production of bacterial alkaline phosphatase (ALP) through bioprocessing development strategies. RESULTS: It was discovered that by utilizing sequential statistical experimental designs, commencing with Plackett-Burman design and ending with spherical central composite design, and then followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, an innovative medium formulation could be developed that boosted ALP production from Bacillus licheniformis strain ALP3 to 212 U L-1. The highest yield of ALP was obtained after 22 h of incubation time with yield coefficient Yp/s of 795 U g-1, which was 4.35-fold higher than those obtained in the shake-flask system. ALP activity has a substantial impact on the volatilization of crab shell particles, as shown by the results of several analytical techniques such as atomic absorption spectrometry, TGA, DSC, EDS, FTIR, and XRD. CONCLUSIONS: We highlighted in the current study that the biovalorization of crab shell waste and the production of cost-effective ALP were being combined and that this was accomplished via the use of a new and innovative medium formulation design for seafood waste management as well as scaling up production of ALP on the bench-top scale.


Assuntos
Braquiúros , Gerenciamento de Resíduos , Fosfatase Alcalina , Animais , Braquiúros/química , Fermentação , Alimentos Marinhos
14.
Environ Sci Pollut Res Int ; 29(59): 89570-89584, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852743

RESUMO

Phosphorus is one of the main pollutants that cause water pollution, and phosphorus is a one-way cycle in the environment, and phosphorus resources will face exhaustion in the next 100 years. Therefore, the recovery and reuse of phosphorus resources have become very important. This article presents a study concerning the removal of phosphate from an aqueous solution by using a calcium-rich biochar prepared by pyrolysis of crab shells. The experimental results show that the optimal pyrolysis temperature of crab shells is 500 â„ƒ, named CSB500, which is more conducive to the adsorption of phosphate. The process of phosphate adsorption conforms to the quasi-second-order kinetics and Freundlich model. On the other hand, the Langmuir isotherm model shows that when the reaction conditions are 25 â„ƒ, 30 â„ƒ, and 35 â„ƒ, the maximum adsorption capacity of CSB500 for phosphate is 164.32 mg/g, 170.47 mg/g, and 209.35 mg/g, respectively. The characterization results show that the overall structure of CSB500 is good, the specific surface area is large, and the main component is calcium carbonate. The potential mechanisms of action in the process of phosphate adsorption may be electrostatic attraction, surface chemical precipitation, ligand exchange, and complexation.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Pirólise , Fosfatos/química , Cálcio , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fósforo/química , Adsorção , Água , Cinética
15.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897896

RESUMO

Chitin, the second richest polymer in nature, is composed of the monomer N-acetylglucosamine (GlcNAc), which has numerous functions and is widely applied in the medical, food, and chemical industries. However, due to the highly crystalline configuration and low accessibility in water of the chitin resources, such as shrimp and crab shells, the chitin is difficult utilize, and the traditional chemical method causes serious environment pollution and a waste of resources. In the present study, three genes encoding chitinolytic enzymes, including the N-acetylglucosaminidase from Ostrinia furnacalis (OfHex1), endo-chitinase from Trichoderma viride (TvChi1), and multifunctional chitinase from Chitinolyticbacter meiyuanensis (CmChi1), were expressed in the Pichia pastoris system, and the positive transformants with multiple copies were isolated by the PTVA (post-transformational vector amplification) method, respectively. The three recombinants OfHex1, TvChi1, and CmChi1 were induced by methanol and purified by the chitin affinity adsorption method. The purified recombinants OfHex1 and TvChi1 were characterized, and they were further used together for degrading chitin from shrimp and crab shells to produce GlcNAc through liquid-assisted grinding (LAG) under a water-less condition. The substrate chitin concentration reached up to 300 g/L, and the highest yield of the product GlcNAc reached up to 61.3 g/L using the mechano-enzymatic method. A yield rate of up to 102.2 g GlcNAc per 1 g enzyme was obtained.


Assuntos
Quitina , Quitinases , Acetilglucosamina/metabolismo , Animais , Quitina/química , Quitinases/química , Crustáceos/metabolismo , Água
16.
J Environ Manage ; 303: 114270, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906832

RESUMO

Increasing metal demand is accelerating the mining and processing of minerals, however to ensure sustainable growth innovative approaches are required to better manage associated effluents. Biochar from the fast pyrolysis of residues from fishery and forestry operations has been studied as a low-cost, environmentally and economically friendly method for treating mine tailings and processing effluents. However, the bulk of the studies focus on terrestrial biomass (e.g. wood) and do not include potential inhibition/enhancement of adsorption due to pH controlling compounds. In this work biochar generated from snow crab (Chionoecetes Opilio) processing was studied as an adsorbent for copper solutions containing sulfate (a key compound in sulfide ore mining waters) with the objective of assessing adsorption capacity and the impact of sulfate on copper adsorption. The biochar, a porous structure comprised of calcite (CaCO3), was alkaline and has a negative zeta potential under neutral and basic conditions. The crab biochar removed over 99% of Cu2+ from a 100 mg/L solution (sourced as CuSO4) at a dosage of 5 g/L, which was higher than lignocellulosic biochar at the same biochar dosage. While metal adsorption can often be impacted at acidic conditions, Cu2+ adsorption was not impacted by initial acidic pH due to the biochar's buffering capacity. The Pseudo-Second Order (PSO) model fit the adsorption rate with maximum adsorption achieved in approximately 2 h. The maximum adsorption isotherm capacity was 184.8 ± 10.2 mg/g for Cu2+, much higher than existing commercial activated carbons and previously studied lignocellulosic biochars and followed the Freundlich isotherm. The adsorption mechanism responsible for removal of Cu2+ was found to be precipitation, in the form of the mineral posnjakite (Cu4[(OH)6SO4]·H2O). These results indicate for the first time that crab-based biochars are capable of adsorbing large quantities of Cu2+ from sulfate-rich solution, while also buffering solution pH, demonstrating promise as an acid mine drainage treatment for removal of harmful metals and reduction of acidity.


Assuntos
Braquiúros , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Cobre/análise , Cinética , Sulfatos , Poluentes Químicos da Água/análise
17.
Environ Sci Pollut Res Int ; 29(17): 25679-25684, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34846668

RESUMO

The present study aimed to investigate the elemental composition of the hard shell of the three-spot swimming crab, Portunus sanguinolentus, collected from the coasts of Pakistan. Thirty crab shells were collected and divided into three groups considering their size. The element detection was performed by energy-dispersive X-ray spectroscopy with scanning electron microscope (SIM/EDAX). The mean concentration of carbon, oxygen, calcium, copper, magnesium, and phosphorus observed in the shell of P. sanguinolentus was 13.63 ± 6.21%, 46.25 ± 12.62%, 34.39 ± 18.33%, 3.19 ± 1.25%, 1.15 ± 0.99%, and 1.39 ± 0.51%, respectively. The concentration pattern of these observed elements in P. sanguinolentus shells was found in the following order: O > Ca > C > Cu > P > Mg. To compare among the three groups of shells, the highest concentration of calcium (54.60%) was obtained in large-sized shell groups, which was significantly different from the other groups (p < 0.05). A high concentration of copper was found to be accumulated in the large-sized (3.55%) and medium-sized (4.21%) shell groups, which was significantly higher than in small-sized shell groups (p < 0.05). In the case of the large-sized shell group, the mean concentrations of magnesium and phosphorus were significantly lower than the medium-sized shell group (p < 0.05). The results indicate that crab shells could act as a good bio-sorbent for several minerals in its ecosystem. P. sanguinolentus shell is very rich in calcium, magnesium, and phosphorus. Extraction of calcium, magnesium, and phosphorus from P. sanguinolentus shells could be profitable for biofertilizer and pharmaceutical industries.


Assuntos
Braquiúros , Animais , Cálcio , Cobre , Ecossistema , Magnésio , Paquistão , Fósforo , Natação
18.
Food Sci Biotechnol ; 30(13): 1645-1655, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925940

RESUMO

Portunus pelagicus shell waste is highly accumulated in seafood processing factories and has low commercial applications. The objective of this study was to modify and develop a scale-up, simple, and high-yielding chemical method for extraction and purification of chitin and chitosan from P. pelagicus shell waste. The developed method included a new "pretreatment" process using acetic acid followed by chemical treatments at each purification step. The final product was characterized by XRD and FTIR spectroscopy. Control chitin and chitosan were produced using a pre-described method for comparison. Yields of crude chitin, chitosan, and purified chitosan were 32.52 ± 0.68%, 26.28 ± 0.47%, and 21.78 ± 0.34% respectively whereas in the control chitin and chitosan the yields were 20.34 ± 0.72% and 13.79 ± 0.93% respectively (p < 0.05). Better physicochemical and functional properties were recorded in the developed method (p < 0.05). Hence the developed methodology can be scaled up and used in industrial applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-01002-x.

19.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201247

RESUMO

Chitin was chemically extracted from crab shell waste and dissolved in N,N-dimethyl acetamine/5% lithium chloride (DMAc/5% LiCl) at room temperature to obtain 1% and 2% concentrations of chitin solution. Chitin fibers were prepared by phase inversion at different temperatures of water coagulation bath at 5, 20, and 60 °C. The deconvolution of FTIR spectra indicated that the area portion of the intermolecular hydrogen bonding NH…OC increased at 60 °C due to the higher density of the chitin segment in the fiber. As a result, scanning electron microscope (SEM) measurement suggests that a denser structure of the chitin fiber was observed when the temperature of the coagulation bath increased. In addition, the resultant chitin fibers generated better mechanical properties relative to the amount of chitin concentration and temperature. At 2% of chitin solution, the tensile strength significantly increased from 80 to 182 MPa for the fiber obtained at temperatures of 5 and 60 °C of the water coagulation bath, respectively. Meanwhile, the water content in the fiber significantly decreased from 1101% to 335%. This green synthesis route has high potential for the fabrication of the fiber as future material of interest for biomedical application.

20.
Heliyon ; 6(10): e05186, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088953

RESUMO

Abattoir wastewater generated from various meat processing operations in several developing countries pose a serious threat to the environment. Consequently, there is urgent need to reduce the impact of environmental pollution from it. Coagulation techniques have been recommended and used by many researchers successfully in treating wastewater, therefore an investigation of possible use of chito-protein extracted from crab shell (locally sourced) was used as a coagulant for treating abattoir wastewater. Coagulation experiments were carried out using jar-test procedure to investigate the influence of pH, time of settling, temperature and adsorbent dosage for coagulation of BOD, COD, Turbidity and Colour from the wastewater sample. To determine the interaction effect of the various process variables, Response Surface Method (RSM) was used in the optimization of the process variables. To determine the effectiveness of the coagulant, pre and post characterization of the wastewater samples were undertaken, the result of the post characterization of the wastewater sample indicated that most of the water quality parameters except Iron were within WHO standard. The Total Suspended Solid (TSS), for instance stood at 564.6 mg/L and 29 mg/L respectively for pre and post characterisation, the value of 29 mg/L of the post characterization was below the WHO recommended value of 30 mg/L. The predicted responses and the experimental values correlated significantly, an indicator that RSM optimization method used in this study is suitable in modelling the process variables. The result of the study further shows that optimum process variable is dependent on the solution pH (acidic), coagulant dosage of 2-3g, settling time of 25-30 min and operating temperature from 323K to 333K. The coagulant used in this study, when compared with previous studies have shown to have strong potential for use as a coagulant and as an alternative to chemical coagulants in the treatment of abattoir wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA