Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Plant Commun ; : 101139, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39354716

RESUMO

Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers due to their substantial damage to crops and worldwide distribution. However, controlling this nematode disease is challenging which results from limited chemical pesticides and biocontrol agents effective against them. Here, we demonstrate that pepper-rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper-rotation also structures the rhizobacterial community, leading to the colonization of two Pseudarthrobacter oxydans strains (RH60 and RH97) in the cucumber rhizosphere, facilitated by palmitic acid enrichment in pepper root exudates. Furthermore, both strains exhibit high nematocidal activity against M. incognita, and possess the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 additionally induce systemic resistance in cucumber plants and promote their growth. These data suggest that pepper root-exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans in the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and uncover its pivotal role in crop rotation for disease attenuation, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.

2.
Zool Stud ; 62: e5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355318

RESUMO

larifying the effects of continuous cotton cropping (CC) on soil biological communities is essential for maintaining agricultural productivity. In this study, high-throughput sequencing was used to study the effects of different CC durations (0-yr, 5-yr, 10-yr, 15-yr, 20-yr, and 25-yr CC treatments) on soil microbial and nematode communities. The results showed that the dominant bacterial phyla were Actinobacteria and Proteobacteria, and the dominant nematode genus was Helicotylenchus in all CC treatments. The richness indexes (ACE and Chao1 index) and diversity index (Shannon index) of bacterial and nematode communities were the highest in the 15-yr and 10-yr CC treatments, respectively. Bacterial community was significantly correlated with soil pH and available potassium (AK), and nematode abundance was significantly correlated with microbial biomass carbon (MBC). Soil bacterial PICRUSt analysis results showed that carbon metabolism and amino acid metabolism were the main metabolic functions of bacteria in the CC treatments. The composition and diversity of soil nematode communities were significantly related to the structure of soil bacterial communities, and the niche breadth of soil bacteria was negatively correlated with that of nematodes. Panagrolaimus and Acrobeles were the main genera of bacterialfeeding nematodes affecting bacterial communities, and their relative abundances were significantly positively correlated with the relative abundance of bacterial communities. Overall, long-term (10-15 years) continuous cotton cropping negatively impacts soil biota and the microecological environment of cotton fields in arid regions.

3.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274945

RESUMO

Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The present study aimed to characterize the composition and nutritional value of maize grain as influenced by cropping system, genetic background (variety), and growing year using untargeted NMR metabolomics. The composition of both water- (sugars and polyols, organic acids, and amino acids) and liposoluble metabolites (free and esterified fatty acids, sterols, and lipids) extracted from the maize grain was determined. Multivariate statistical analyses (PCA and ANOVA) pointed to the growing year and the variety as the most important random and fixed factors, respectively, influencing the metabolite profile. The samples were separated along PC1 and PC3 according to the growing year and the variety, respectively. A higher content of citric acid and diunsaturated fatty acids and a lower content of tyrosine, trigonelline, and monounsaturated fatty acids was observed in the organic with respect to the conventional variety. The effect of the cropping system was overwhelmed by the random effect of the growing year. The results provide novel knowledge on the influence of agronomic practices on maize micronutrient contents.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/química , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/química , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Metaboloma , Aminoácidos/metabolismo , Aminoácidos/análise , Valor Nutritivo
4.
Sci Rep ; 14(1): 21291, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266574

RESUMO

Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.


Assuntos
Bactérias , Fritillaria , Fungos , Microbiologia do Solo , Fritillaria/crescimento & desenvolvimento , Fritillaria/microbiologia , Tibet , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Solo/química , Rizosfera , Microbiota , Micobioma
5.
Appl Environ Microbiol ; : e0228723, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235242

RESUMO

The composition and stability of the microbial community structure of roots and root zone soils play a key role in the healthy growth of plants. We examined the distribution characteristics of phenolic acids and saponins, as well as microbial communities in the root space (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) of healthy and root rot disease-affected Panax notoginseng. The results showed that after infection with root rot, the rhizoplane soil exhibited significant decreases in organic matter and hydrolyzable nitrogen and significant increases in available phosphorus, available potassium, and total nitrogen. The contents of phenolic acids (except benzoic acid) and ginsenoside Rg2 in the root endosphere significantly increased. Ferulic acid and p-hydroxybenzoic acid in the rhizoplane soil significantly increased. Rhodococcus increased significantly in the root endosphere, rhizoplane, and rhizosphere soil; Nitrospira decreased significantly in the rhizoplane, rhizosphere, and bulk soil; and Plectosphaerella decreased significantly in the root endosphere and rhizoplane soil. Moreover, the accumulation of most autotoxins can promote the growth of pathogens. In summary, the spatial autotoxic substances and microbial community differences in P. notoginseng roots jointly induce the occurrence of root rot.IMPORTANCEPanax notoginseng is highly susceptible to soil-borne diseases induced during planting, and root rot, which usually occurs in the root and stem parts of the plant, is the most severe. We divided the root environment of P. notoginseng into four parts (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) and studied it with unplanted soil as the control. In this study, we examined the changes in the content of autotoxic substances in the root space of P. notoginseng, along with the interplay between these substances and microorganisms. This study revealed the mechanism underlying root rot and provided a theoretical basis for alleviating continuous cropping obstacles in P. notoginseng.

6.
Data Brief ; 56: 110842, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39257684

RESUMO

The presented set of data brings results of the experimental production of biogas and methane from silages of alternative substrates consisting of maize and three leguminous species with a potential to make the production of biogas more friendly to the environment because the cultivation of legumes is generally considered to be more environment friendly than the cultivation of maize: white sweet clover (Melilotus albus Medik.), fodder vetch (Vicia villosa Roth.) and white lupin (Lupinus albus L.). Obtained data allow to compare the composition of experimental substrates and their important parameters (VS, DM, NDF, ADF, CF, starch, cellulose, hemicellulose, CP, lipids and ADL) as well as the yield of biogas, methane and methane in biogas from silage produced as a monosubstrate from the biomass of maize shreddings on the one side with silages produced from the mixture of biomass from maize and diverse legumes on the other side. This set of data can contribute to awareness about possibilities for reducing environmental risks connected with the cultivation of maize in growers of energy crops and operators of biogas plants. The reason is that a considerable number of farmers do not use new technologies of growing biomass for the production of biogas as they cannot quantify the potential impact on biogas yield and hence on the profitability of biogas plant operation. The measured values demonstrate that silages made from the mixed culture were reaching at least the same production of biogas and its quality as the monocultural maize silage.

7.
Huan Jing Ke Xue ; 45(9): 5578-5590, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323174

RESUMO

Continuous cropping is a common obstacle limiting the high quality and yield of Lycium barbarum (wolfberry). To clarify the response of soil characteristics of the wolfberry root zone to continuous cropping years, we systematically determined the physicochemical properties and pesticide residues of soils in the wolfberry root zone with different continuous cropping years. In addition, soil bacterial and fungal communities were characterized using high-throughput sequencing technology. The results were as follows: The content of total salt and imidacloprid in the root zone of wolfberry increased with increasing years of continuous cropping. Compared to that with 2 and 9 years, the total salt content in the root zone of wolfberry with 15 years of continuous cropping increased by 51.97% and 54.33%, respectively, and the imidacloprid content increased by 39.58% and 36.61%, respectively. Alkaline nitrogen and available potassium showed an increasing and then decreasing trend. Compared to that with 2 and 15 years, alkaline nitrogen and available potassium in the root-soil of wolfberry with 9 years of continuous cropping increased by 16.94%-28.09% and 18.31%-18.34%, respectively. The diversity and abundance of bacterial communities and the abundance of fungal communities were higher in the root-soil of wolfberry with 9 years of continuous cropping compared to that with 15 years of continuous cropping. In addition, the increase in continuous cropping years also increased the accumulation of harmful plant pathogens such as Pseudomonas, Arthrobacter, Actinomucor, and Trichoderma in the root zone of L. barbarum. Soil total salinity, organic matter, alkaline hydrolyzable nitrogen, and available potassium were the main factors influencing the distribution of bacterial communities. Soil alkaline hydrolyzable nitrogen, available potassium, and ammonium nitrogen were the main factors influencing the distribution of fungal communities. In addition, the soil bacteria in the root zone of L. barbarum were dominated by metabolic functions; in particular, amino acid metabolism, energy metabolism, and nucleotide metabolism were most abundant in the root soil of wolfberry with 9 years of continuous cropping, whereas the highest abundance of functional genes related to membrane translocation was found in the root-soil of wolfberry with 15 years of continuous cropping. The soil fungi were all dominated by saprophytic trophic types, followed by pathogenic cross-nutrients in the root zone of L. barbarum. In conclusion, long-term continuous cropping induced changes in the soil microenvironment in the root zone of L. barbarum, increased soil residues of harmful pesticides and the enrichment of plant pathogens, and reduced the diversity of soil bacterial and fungal communities. Therefore, it is necessary to control the rate of application of soil nutrients and pesticides in the management of L. barbarum and to carry out deep ploughing and deep tilling in good time, and the turnover of old plants in the cultivation of L. barbarum.


Assuntos
Lycium , Resíduos de Praguicidas , Raízes de Plantas , Microbiologia do Solo , Solo , Lycium/crescimento & desenvolvimento , Solo/química , Resíduos de Praguicidas/análise , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Agricultura/métodos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Neonicotinoides , Microbiota , Nitrocompostos , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Produção Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/análise
8.
Sci Total Environ ; 953: 176102, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39265688

RESUMO

Non-paddy cropping systems play a significant role in food production. However, excessive nitrogen loss from non-paddy soils through nitrate leaching and ammonia volatilization poses a significant challenge to environmental sustainability. In this study, microcosm and field-scale experiments were conducted to explore the potential for using hydrogen peroxide (H2O2) to mitigate nitrogen loss and greenhouse gas emissions, aiming at filling gaps in knowledge regarding the underlying biochemical mechanisms. The results show that input of micromolar H2O2 from either artificial addition or natural rainwater into soils in the presence of magnetite (Fe3O4) could trigger Fenton-like reaction, which inhibited microbially mediated nitrification of soil-borne ammonium but did not affect the growth of the test crop plant (water spinach). In the absence of Fe3O4, input of rainwater-borne H2O2 into non-paddy soils caused reduction in the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). There was a trend showing that the degree of reduction in N2O and CO2 fluxes increased with increasing concentration of rainwater-borne H2O2. It was likely that microbially mediated reduction of iron oxides took place during rainfall events, providing Fe(II) that is needed for reaction with rainwater-borne H2O2, triggering Fenton-like reaction to inhibit the soil microbes that mediate production of N2O and CO2 in the soils. The findings obtained from this study have implications for developing strategies to manage soil­nitrogen to minimize its environmental impacts.

9.
FEMS Microbiol Ecol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289000

RESUMO

The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation, and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.

10.
Plant Biol (Stuttg) ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316642

RESUMO

This study investigated the effect of mixing volatile organic compounds (VOC) emitted by host and non-host plants on the orientation of key pests of Brassicaceae. The study aimed to understand how these mixed VOCs influence pest behaviour, which could help in tailoring pest management strategies. The orientations of flea beetles, Phyllotreta spp., and the diamondback moth (DBM), Plutella xylostella, towards cabbage VOCs mixed with faba bean VOCs were assessed using Y-tube olfactometry. The pests' preferences were measured to determine if the presence of faba bean alongside cabbage altered their olfactory orientation compared to cabbage alone. Flea beetles showed a preference for cabbage VOCs alone over the cabbage-faba bean VOC mix. For DBM, no significant preference was observed between cabbage alone and the cabbage-faba bean mix. Previous findings indicated that faba bean attracts DBM, and in this study the mixture of cabbage and faba bean appeared to be more attractive than cabbage alone. The results indicate that faba bean VOCs can deter flea beetles from cabbage, potentially offering a pest management strategy. However, the effect on DBM was inconclusive, with no clear preference observed. This suggests that while faba bean VOCs may influence pest orientation, their effectiveness varies among different pest species. Additionally, herbivore damage to cabbage leaves did not appear to influence the odour-guided orientation of either pest, irrespective of the presence or absence of faba bean.

11.
Microorganisms ; 12(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203462

RESUMO

Soil-borne diseases are exacerbated by continuous cropping and negatively impact maize health and yields. We conducted a long-term (11-year) field experiment in the black soil region of Northeast China to analyze the effects of different cropping systems on maize yield and rhizosphere soil fungal community structure and function. The experiment included three cropping systems: continuous maize cropping (CMC), maize-soybean rotation (MSR), and maize-soybean intercropping (MSI). MSI and MSR resulted in a 3.30-16.26% lower ear height coefficient and a 7.43-12.37% higher maize yield compared to CMC. The richness and diversity of rhizosphere soil fungi were 7.75-20.26% lower in MSI and MSR than in CMC. The relative abundances of Tausonia and Mortierella were associated with increased maize yield, whereas the relative abundance of Solicoccozyma was associated with decreased maize yield. MSI and MSR had higher proportions of wood saprotrophs and lower proportions of plant pathogens than CMC. Furthermore, our findings indicate that crop rotation is more effective than intercropping for enhancing maize yield and mitigating soil-borne diseases in the black soil zone of Northeast China. This study offers valuable insights for the development of sustainable agroecosystems.

12.
Environ Monit Assess ; 196(9): 838, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180704

RESUMO

Soil organic carbon (SOC) is known to vary among different ecosystems and soilscapes, yet the degree of variation remains uncertain. Comparing SOC levels in undisturbed ecosystems like forests with those in gradually altered ecosystems can provide valuable insights into the impact of land use on carbon dynamics. This study aimed to evaluate the effects of different land uses on soil fertility parameters in the tropical region of Kerala, focusing on forests as well as cultivated agricultural landscape such as coconut, pepper, tapioca, acacia plantations, and mixed home garden cropping systems. Significant variations were observed among different crops and land use systems in terms of soil fertility. Forests exhibited the highest SOC content at 3.78 g kg-1, while acacia plantations showed the lowest at 0.76 g kg-1. Additionally, various soil properties such as different carbon fractions (e.g., humic acid, fulvic acid), total nitrogen, carbon, available nutrients, physical properties, aggregate size fractions, microbial biomass carbon, and spectral signatures differed significantly across the different land uses. These findings suggest a decline in soil fertility in altered ecosystems compared to adjacent forest soils, highlighting the vital role of forests in conserving natural resources and maintaining soil health. In addition, among the different landscapes studied, mixed cropping systems of home gardens sustained soil fertility better than monocropping systems. The observed variations in soil physicochemical properties among different land use types indicate a threat to sustainable crop production. Effective management practices aimed at improving soil fertility and sustaining crop production in these altered ecosystems are essential. This study highlights the importance of adopting appropriate management strategies to conserve soil health and ensure sustainable crop production in tropical landscapes like Kerala. The holistic approach adopted in this study, encompassing a wide range of soil fertility parameters across various land uses, along with its implications for sustainable land management, adds significant novelty and relevance to the existing literature on soil dynamics in tropical regions like Kerala.


Assuntos
Agricultura , Carbono , Monitoramento Ambiental , Florestas , Solo , Solo/química , Índia , Carbono/análise , Ecossistema , Produtos Agrícolas , Nitrogênio/análise
13.
J Agric Food Chem ; 72(36): 19604-19617, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39196612

RESUMO

The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.


Assuntos
Codonopsis , Raízes de Plantas , Plantas Medicinais , Solo , Solo/química , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/química , Codonopsis/metabolismo , Codonopsis/crescimento & desenvolvimento , Codonopsis/química , Plantas Medicinais/metabolismo , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/genética , Microbiologia do Solo , Poli-Inos/metabolismo , Rizosfera , Produção Agrícola/métodos
15.
Front Microbiol ; 15: 1410219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101036

RESUMO

Long-term continuous cropping affects the soil microecological community and leads to nutrient imbalances, which reduces crop yields, and crop rotation can increase soil productivity. To study the effects of the cultivation of tomato (Solanum lycopersicum) and corn (Zea mays) on the microbial community, physical and chemical factors and the structure of aggregates in cotton (Gossypium hirsutum) long-term continuous cropping soils were examined. Four cropping patterns were established, including one continuous cropping pattern and three crop rotation patterns, and the diversity of the soil microecological community was measured using high-throughput sequencing. The physical and chemical properties of different models of soil were measured, and the soil aggregate structure was determined by dry and wet sieving. Planting of aftercrop tomato and corn altered the bacterial community of the cotton continuous soil to a lesser extent and the fungal community to a greater extent. In addition, continuous cropping reduced the diversity and richness of the soil fungal community. Different aftercrop planting patterns showed that there were very high contents of soil organic carbon and organic matter in the cotton-maize rotation model, while the soil aggregate structure was the most stable in the corn-cotton rotation model. Planting tomato in continuous cropping cotton fields has a greater effect on the soil microbial community than planting maize. Therefore, according to the characteristics of different succeeding crop planting patterns, the damage of continuous cropping of cotton to the soil microenvironment can be alleviated directionally, which will enable the sustainable development of cotton production.

16.
Plants (Basel) ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124234

RESUMO

In Korea, greenhouses are traditionally used for crop cultivation in the winter. However, due to diverse consumer demands, climate change, and advancements in agricultural technology, more farms are aiming for year-round production. Nonetheless, summer cropping poses challenges such as high temperatures, humidity from the monsoon season, and low light conditions, which make it difficult to grow crops. Therefore, this study aimed to determine the best planting time for summer tomato cultivation in a Korean semi-closed greenhouse that can be both air-conditioned and heated. The experiment was conducted in the Advanced Digital Greenhouse, built by the National Institute of Agricultural Sciences. The tomato seedlings were planted in April, May, and June 2022. Growth parameters such as stem diameter, flowering position, stem growth rate, and leaf shape index were measured, and harvesting was carried out once or twice weekly per treatment from 65 days to 265 days after planting. The light use efficiency and yield per unit area at each planting time was measured. Tomatoes planted in April showed a maximum of 42.9% higher light use efficiency for fruit production and a maximum of 33.3% higher yield. Furthermore, the growth form of the crops was closest to the reproductive growth type. Therefore, among April, May, and June, April is considered the most suitable planting time for summer cultivation, which is expected to contribute to reducing labor costs due to decreased workload and increasing farm income through increased yields. Future research should explore optimizing greenhouse microclimates and developing crop varieties tailored for summer cultivation to further enhance productivity and sustainability in year-round agricultural practices.

17.
Heliyon ; 10(13): e33900, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050458

RESUMO

High application rates of dairy effluent and manure are often associated with nitrogen (N) leaching, which can affect groundwater quality. Here, we used a lysimeter to examine N leaching losses and biomass yield following application of dairy effluent and manure under wheat-maize cropping. The field experiment included seven treatments: no N fertilizer (Control); 200/300 kg N ha-1 synthetic N fertilizer only (wheat/maize) (CN); 100/150 kg N ha-1 synthetic N fertilizer plus 100/150 (DE1), 150/200 (DE2) and 250/350 (DE3) kg N ha-1 dairy effluent; 100/150 kg N ha-1 synthetic fertilizer plus 100/150 kg N ha-1 dairy manure (SM1); and 150/225 kg N ha-1 synthetic fertilizer plus 50/75 kg N ha-1 dairy manure (SM2). Compared with CN, DE1 treatment increased maize yield by 10.0 %, wheat N use efficiency (NUE) by 26.5 %, and wheat and maize N uptake by 7.7-16.3 %, while reduced N leaching by 22.4 % in wheat season and by 40.4 % in the maize season. In contrast, DE2 and DE3 treatment increased N leaching by 27.2-241 % and reduced NUE by 26.2-55.2 %. SM2 treatment increased yield and NUE by 8.8 % and 7.8 %, respectively, and reduced N leaching by 42.9 % during the wheat but not the maize season. Annual N leaching losses were 37.6 kg N ha-1 under CN treatment, but decreased to 27.4 kg N ha-1 under DE1. In contrast, N leaching increased to 52.8 and 84.1 kg N ha-1 under DE2 and DE3 treatment, respectively (P < 0.05). Meanwhile, under SM1 and SM2 treatment, N leaching decreased by 71.2 % and 32.0 %, respectively, compared with CN. These results suggest that replacing 50 % and 25 % synthetic N fertilizer with dairy farm effluent and manure could reduce N leaching losses but had varied effects on crop productivity under wheat-maize cropping.

18.
BMC Plant Biol ; 24(1): 715, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060975

RESUMO

BACKGROUND: Crop diversification is considered as an imperative approach for synchronizing the plant nutrient demands and soil nutrient availability. Taking two or more crops from the same field in one year is considered as multiple cropping. It improves the diversity and abundance of soil microbes, thereby improving the growth and yield of crops. Therefore, the present study was conducted to explore the effects of different multiple winter cropping on soil microbial communities in paddy fields. In this study, eight rice cropping patterns from two multiple cropping systems with three different winter crops, including Chinese milk vetch (CMV), rape, and wheat were selected. The effects of different multiple winter cropping on soil microbial abundance, community structure, and diversity in paddy fields were studied by 16 S rRNA high-throughput sequencing and real-time fluorescence quantitative polymerase chain reaction (PCR). RESULTS: The results showed that different multiple winter cropping increased the operational taxonomic units (OTUs), species richness, and community richness index of the bacterial community in 0 ~ 20 cm soil layer. Moreover, soil physical and chemical properties of different multiple cropping patterns also affected the diversity and abundance of microbial bacterial communities. The multiple cropping increased soil potassium and nitrogen content, which significantly affected the diversity and abundance of bacterial communities, and it also increased the overall paddy yield. Moreover, different winter cropping changed the population distribution of microorganisms, and Proteobacteria, Acidobacteria, Nitrospira, and Chloroflexi were identified as the most dominant groups. Multiple winter cropping, especially rape-early rice-late rice (TR) andChinese milk vetch- early rice-late rice (TC) enhanced the abundance of Proteobacteria, Acidobacteria, and Actinobacteria and decreased the relative abundance of Verrucomicrobia and Euryarchaeota. CONCLUSION: In conclusion, winter cropping of Chinese milk vetch and rape were beneficial to improve the soil fertility, bacteria diversity, abundance and rice yield.


Assuntos
Bactérias , Oryza , Microbiologia do Solo , Solo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Solo/química , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Produtos Agrícolas/crescimento & desenvolvimento , Biodiversidade , RNA Ribossômico 16S/genética , Microbiota , Estações do Ano , Agricultura/métodos , Produção Agrícola/métodos
19.
Heliyon ; 10(12): e33011, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994090

RESUMO

Biochar application to soil has proven to be an excellent approach for decreasing the concentration of auto-toxic compounds and promoting plant growth in continuous-cropping fields. However, the mechanisms underlying the action pathway among biochars, auto-toxic compounds and tobacco remain unknown. In this study, we conducted an experiment tracking the incidence rate of black rot and auto-toxic compounds for a 3-year continuous-cropping tobacco pot trial in response to biochar treatment intensity compared with that of non-biochar treatment. Biochar inhibited the incidence of black rot. Using ultra-high-performance liquid chromatography-mass spectrometry (UPLC‒MS/MS), we revealed that biochar can effectively decrease the concentration of p-hydroxybenzoic acid (PHA), which is associated with the incidence rate of black rot (R2 = 0.890, p < 0.05). The sorption kinetics and isotherm of PHA sorption on biochar indicate that the coexistence of heterogeneous and monolayer sorption plays an important role in the adsorption process. Using Molecular dynamics (MD), Density functional theory (DFT) and Independent gradient model (IGM) analyses, we provide evidence that van der Waals force (vdW), π-π bonds and H-bonds between biochar and PHAs are the dominant factors that affect adsorption capacity. Moreover, the molecular adsorption rate (Nbiochar: NPHAs = 1:4) was theoretically calculated. In contrast, biochar dramatically increased nutrient retention capacity and improved soil properties, further enhancing tobacco quality, including its agronomic and physiological traits. Therefore, we considered that biochar not only relieved continuous cropping but also improved soil properties suitable for tobacco growth. Together, we demonstrate that the action of biochar in continuously cropped soil improves soil traits and alleviates auto-toxic compound toxicity. These data contribute to the direction of modified biochar application to improve continuous-cropping soil.

20.
Front Microbiol ; 15: 1416256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962123

RESUMO

Introduction: The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods: In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results: There was no significant difference in α diversity, but significant difference in ß diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion: From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA