RESUMO
Cystinuria is a genetic disease that can lead to cystine urolith formation. The English bulldog is the dog breed most frequently affected. In this breed, three missense mutations have been suggested to be associated with cystinuria: c.568A>G and c.2086A>G in SLC3A1 and c.649G>A in SLC7A9. In this study, the occurrence of these three mutations in the Danish population of English bulldogs was investigated. Seventy-one English bulldogs were genotyped using TaqMan assays. The dogs' owners were given questionnaires concerning the medical histories of their dogs. Allele frequencies of 0.40, 0.40, and 0.52 were found for the mutant alleles in the three loci: c.568A>G, c.2086A>G, and c.649G>A, respectively. For both mutations in SLC3A1, a statistically significant association was found between cystinuria and homozygosity for the G allele among male, English bulldogs. For the mutation in SLC7A9, there was no statistically significant association between homozygosity for the mutant allele and cystinuria. Due to high allele frequencies, limited genetic diversity, continued uncertainty about the genetic background of cystinuria, and more severe health problems in the breed, selection based on genetic testing for the mutations in SLC3A1 cannot be recommended in the Danish population of English bulldogs. However, results of the genetic test may be used as a guide to recommend prophylactic treatment.
Assuntos
Cistinúria , Doenças do Cão , Cães , Masculino , Animais , Cistinúria/genética , Cistinúria/veterinária , Mutação , Genótipo , Testes Genéticos/veterinária , Dinamarca , Doenças do Cão/genéticaRESUMO
The purpose of this review is to summarize current knowledge on canine and feline cystinuria from available scientific reports. Cystinuria is an inherited metabolic defect characterized by abnormal intestinal and renal amino acid transport in which cystine and the dibasic amino acids ornithine, lysine, and arginine are involved (COLA). At a normal urine pH, ornithine, lysine, and arginine are soluble, but cysteine forms a dimer, cystine, which is relatively insoluble, resulting in crystal precipitation. Mutations in genes coding COLA transporter and the mode of inheritance were identified only in some canine breeds. Cystinuric dogs may form uroliths (mostly in lower urinary tract) which are associated with typical clinical symptoms. The prevalence of cystine urolithiasis is much higher in European countries (up to 14% according to the recent reports) when compared to North America (United States and Canada) where it is approximately 1-3%. Cystinuria may be diagnosed by the detection of cystine urolithiasis, cystine crystalluria, assessment of amino aciduria, or using genetic tests. The management of cystinuria is aimed at urolith removal or dissolution which may be reached by dietary changes or medical treatment. In dogs with androgen-dependent cystinuria, castration will help. In cats, cystinuria occurs less frequently in comparison with dogs.
RESUMO
Urolithiasis in captive domestic ferrets has previously been predominantly struvite uroliths, although more recent laboratory submissions show a shift to predominantly cystine uroliths. Genetic mutations for cystinuria have been identified in dogs, and it is suspected that underlying genetic mutations are partly responsible for this disease in ferrets. Currently, surgery remains the only definitive treatment of cystine urolithiasis in ferrets, since dietary dissolution protocols have not been thoroughly explored. Despite this, medical management with dietary and urinary manipulation should be considered for use in ferrets postoperatively based on principles of cystine urolithiasis management in dogs adapted for ferrets.
Assuntos
Cistina , Furões , Urolitíase/veterinária , AnimaisRESUMO
BACKGROUND: Cystinuria is a rare genetic disorder characterized by defective renal reabsorption of cystine, ornithine, arginine, and lysine. The increased urinary excretion of cystine results in the development of cystine urolithiasis (CU). The mutated SLC3A1 and SLC7A9 genes are the cause of CU, a global disorder. Its frequency and mutation spectrum vary between different populations. In Asia, the data for CU are limited. METHOD: Urinary stones were collected from patients of a single center over a five-year period and analyzed via Fourier transform infrared spectroscopy. Genomic DNA was isolated from 13 patients with CU and their parents and from 26 controls affected by calcium oxalate dihydrate stones. The coding regions and the exon-intron boundaries of SLC3A1 and SLC7A9 were subjected to PCR amplification and then sequenced via traditional Sanger sequencing. Genetic variants were functionally annotated using the InterVar, ClinVar, gnom AD, and HGMD databases. RESULTS: From the 232 samples of urinary stones, we identified 13 patients with CU (10 males and 3 females). The onset age was from 7 months to 9 years. The CU stones varied from 0.26 cm3 to 18.67 cm3. Sanger sequencing detected a total of 14 SLC3A1 (nine were novel) and 10 SLC7A9 (six were novel) rare variants from the 13 CU families. All variants, including 15 novel variants, were pathogenic, disease-causing, or damaging. CONCLUSION: All 13 pediatric CU families harbored SLC3A1 or/and SLC7A9 rare variants. A total of 15 novel pathogenic variants in SLC3A1 and SLC7A9 were identified. This study expanded the known mutational spectrum of CU in the Chinese population.