RESUMO
Exposure of the endoplasmic reticulum chaperone calreticulin (CALR) on the surface of stressed and dying cells is paramount for their effective engulfment by professional antigen-presenting cells such as dendritic cells (DCs). Importantly, this is required (but not sufficient) for DCs to initiate an adaptive immune response that culminates with an effector phase as well as with the establishment of immunological memory. Conversely, the early exposure of phosphatidylserine (PS) on the outer layer of the plasma membrane is generally associated with the rapid engulfment of stressed and dying cells by tolerogenic macrophages. Supporting the clinical relevance of the CALR exposure pathway, the spontaneous or therapy-driven translocation of CALR to the surface of malignant cells, as well as intracellular biomarkers thereof, have been associated with improved disease outcome in patients affected by a variety of neoplasms, with the notable exception of multiple myeloma (MM). Here, we describe an optimized protocol for the flow cytometry-assisted quantification of surface-exposed CALR and PS on CD38+ plasma cells from the bone marrow of patients with MM. With some variations, we expect this method to be straightforwardly adaptable to the detection of CALR and PS on the surface of cancer cells isolated from patients with neoplasms other than MM.
Assuntos
ADP-Ribosil Ciclase 1 , Calreticulina , Citometria de Fluxo , Plasmócitos , Humanos , Calreticulina/metabolismo , Citometria de Fluxo/métodos , ADP-Ribosil Ciclase 1/metabolismo , Plasmócitos/metabolismo , Plasmócitos/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Fosfatidilserinas/metabolismo , Medula Óssea/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMO
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Assuntos
Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Humanos , Animais , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Trifosfato de Adenosina/metabolismo , Microbioma Gastrointestinal , Transdução de Sinais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/etiologia , Intestinos/patologia , Intestinos/microbiologiaRESUMO
Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) are key triggers of inflammation in sepsis. However, they have rarely been studied simultaneously. Thus, in the present study of patients with bacteraemic infection, we aimed to study how DAMP dynamics are linked to disease severity and outcome and to compare diagnostic and prognostic properties of a DAMP and a previously analysed PAMP (16S rDNA). In a prospective study of adult patients hospitalized with culture-proven community-onset bacteraemic infection, caused by Streptococcus pneumonia (n = 30), Staphylococcus aureus (n = 27), or Escherichia coli (n = 26), dynamics of a PAMP, i.e. 16S rDNA, have previously been presented. For the present study, blood samples obtained on hospital days 1-2 (when blood culture was positive), 3-4, 7 ± 1, 14 ± 2, and 28 ± 4 were analysed for four different DAMPs, i.e., nuclear DNA (nDNA), mitochondrial DNA (mtDNA), heat shock protein 90 alpha (HSP90α), and extracellular high mobility group box 1 (HMGB1). Sepsis was defined according to the Sepsis-3 criteria. The study outcomes were sepsis at admission and negative outcome, defined as intensive care unit (ICU) admission and/or death within 60 days. Of 83 study patients, sepsis was noted in 41 patients (49%) and a negative outcome was noted in 17 patients (20%). nDNA had areas under the receiver operating characteristic (ROC) curves of 0.78 for sepsis and 0.76 for negative outcome, which were higher than those of the other DAMPs and additional biomarkers (CRP, IL-6, IL-8, and IL-10). The nDNA and positive 16S rDNA results on day 1-2 were correlated with each other (r = 0.68, p < 0.001). Multivariate analyses showed that high day 1-2 concentrations of both nDNA and 16S rDNA were independently associated with sepsis. In addition, high day 1-2 concentration of nDNA was independently associated with negative outcomes. While 16S rDNA dissipated from the circulation within days, nDNA concentrations remained elevated throughout the follow-up period in patients with negative outcome. In conclusion, nDNA outperformed the other DAMPs regarding sepsis detection and outcome prediction. Both nDNA (a DAMP) and 16S rDNA (a PAMP) were independently linked to sepsis; nDNA was also associated with negative outcomes and persisted elevated in such cases. This highlights nDNA as an interesting marker within sepsis pathogenesis and as a promising clinical biomarker, warranting further studies.
Assuntos
Bacteriemia , DNA Bacteriano , Humanos , Masculino , Feminino , Idoso , DNA Bacteriano/genética , DNA Bacteriano/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Bacteriemia/sangue , Proteína HMGB1/sangue , Proteína HMGB1/genética , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/sangue , Biomarcadores/sangue , Sepse/microbiologia , Sepse/diagnóstico , Sepse/sangue , Sepse/genética , Alarminas/sangue , Alarminas/metabolismo , Prognóstico , RNA Ribossômico 16S/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Adulto , Idoso de 80 Anos ou mais , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidadeRESUMO
Introduction: This study leverages bioinformatics and medical big data to integrate datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), providing a comprehensive overview of immunogenic cell death (ICD)-related gene expression in colorectal cancer (CRC). The research aims to elucidate the molecular pathways and gene networks associated with ICD in CRC, with a focus on the therapeutic potential of cell death inducers, including ferroptosis agents, and their implications for precision medicine. Methods: We conducted differential expression analysis and utilized advanced bioinformatic techniques to analyze ICD-related gene expression in CRC tissues. Unsupervised consensus clustering was applied to categorize CRC patients into distinct ICD-associated subtypes, followed by an in-depth immune microenvironment analysis and single-cell RNA sequencing to investigate immune responses and cell infiltration patterns. Experimental validation was performed to assess the impact of cell death inducers on ICD gene expression and their interaction with ferroptosis inducers in combination with other clinical drugs. Results: Distinct ICD gene expression profiles were identified in CRC tissues, revealing molecular pathways and intricate gene networks. Unsupervised consensus clustering refined the CRC cohort into unique ICD-associated subtypes, each characterized by distinct clinical and immunological features. Immune microenvironment analysis and single-cell RNA sequencing revealed significant variations in immune responses and cell infiltration patterns across these subtypes. Experimental validation confirmed that cell death inducers directly affect ICD gene expression, highlighting their therapeutic potential. Additionally, combinatorial therapies with ferroptosis inducers and clinical drugs were shown to influence drug sensitivity and resistance in CRC. Discussion: Our findings underscore the importance of ICD-related genes in CRC prognosis and therapeutic targeting. The study provides actionable insights into the efficacy of cell death-inducing therapies, particularly ferroptosis inducers, and their regulatory mechanisms in CRC. These discoveries support the development of precision medicine strategies targeting ICD genes and offer valuable guidance for translating these therapies into clinical practice, with the potential to enhance CRC treatment outcomes and patient survival.
Assuntos
Neoplasias Colorretais , Ferroptose , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Ferroptose/genética , Ferroptose/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Imunoterapia/métodos , Morte Celular Imunogênica , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de GenesRESUMO
INTRODUCTION: Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. ß-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms. METHODS: This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of ß-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay. RESULTS: We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of ß-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA. CONCLUSION: In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of ß-amyloid in KOA was confirmed by experiments, and the correlation between ß-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.
Assuntos
Peptídeos beta-Amiloides , Apolipoproteínas E , Biologia Computacional , Humanos , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Feminino , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Idoso , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Inflamação/genética , Inflamação/imunologia , Osteoartrite/genética , Aprendizado de MáquinaRESUMO
BACKGROUND: Alarmins resulting from cell death or oxidative stress are involved in the development of Kawasaki disease (KD) vasculitis. In a previous study, we demonstrated the potential role of interleukin (IL)-33 as an alarmin in the development of KD vasculitis. Although edematous dissociation (necrotic change) of the tunica media is thought to be a major source of IL-33 in KD vasculitis, it has not yet been elucidated. METHODS AND RESULTS: We investigated the impact of IL-33 released from necrotic human coronary artery smooth muscle cells (HCASMCs) on human coronary artery endothelial cells (HCAECs) using a coculture assay. Subsequently, we evaluated the anti-inflammatory effects of anti-IL-33 and anti-suppression of tumorigenicity 2 (ST2) antibodies compared with conventional therapies of KD, such as high-dose IgG or anti-tumor necrosis factor (TNF)-α antibody. Primary necrosis of HCASMCs induced significant release of IL-33. In cocultures of necrotic HCASMCs with HCAECs, the necrotic HCASMCs significantly induced the production of various proinflammatory cytokines in the HCAECs. Anti-IL-33 and anti-ST2 antibodies exhibited unique inhibitory effects on the production of platelet-derived growth factor-BB or IL-12(p70) in HCAECs. CONCLUSIONS: There is potential involvement of edematous dissociation of the tunica media in the development of KD vasculitis. Furthermore, the distinctive anti-inflammatory effects of the anti-IL-33/ST2 axis drugs suggest novel therapeutic options for patients with refractory KD.
Assuntos
Vasos Coronários , Interleucina-33 , Síndrome de Linfonodos Mucocutâneos , Necrose , Síndrome de Linfonodos Mucocutâneos/patologia , Humanos , Vasos Coronários/patologia , Interleucina-33/metabolismo , Túnica Média/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/etiologia , Masculino , Células Cultivadas , Técnicas de CoculturaRESUMO
Post-surgical adhesion is a medical challenge, especially following abdominal and pelvic surgeries. This refers to the formation of fibrotic scars that form from connective tissue in the gynecological tract or abdominal cavity. Dysfunctional adipose tissue (AT) by surgical injuries and hypoxia increases the risk of post-surgical adhesion through different molecular mechanisms. Damage-associated molecular patterns (DAMPs) and Hypoxia-induced factor 1 alpha (HIF-1α) produced during surgery trauma and hypoxia induce AT dysfunction to promote inflammation, oxidative stress, metabolic alterations, and profibrotic pathways, which contribute to post-surgical adhesions. HIF-1α and DAMPs can be considered therapeutic targets to prevent AT dysfunction and diminish the formation of adhesions in obese patients undergoing abdominal or pelvic surgeries.
Assuntos
Tecido Adiposo , Hipóxia , Humanos , Aderências Teciduais/metabolismo , Tecido Adiposo/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo , Estresse Oxidativo , Obesidade/complicações , Obesidade/metabolismo , Alarminas/metabolismoRESUMO
Extracellular histones are crucial damage-associated molecular patterns involved in the development and progression of multiple critical and inflammatory diseases, such as sepsis, pancreatitis, trauma, acute liver failure, acute respiratory distress syndrome, vasculitis and arthritis. During the past decade, the physiopathologic mechanisms of histone-mediated hyperinflammation, endothelial dysfunction, coagulation activation, neuroimmune injury and organ dysfunction in diseases have been systematically elucidated. Emerging preclinical evidence further shows that anti-histone strategies with either their neutralizers (heparin, heparinoids, nature plasma proteins, small anion molecules and nanomedicines, etc.) or extracorporeal blood purification techniques can significantly alleviate histone-induced deleterious effects, and thus improve the outcomes of histone-related critical and inflammatory animal models. However, a systemic evaluation of the efficacy and safety of these histone-targeting therapeutic strategies is currently lacking. In this review, we first update our latest understanding of the underlying molecular mechanisms of histone-induced hyperinflammation, endothelial dysfunction, coagulopathy, and organ dysfunction. Then, we summarize the latest advances in histone-targeting therapy strategies with heparin, anti-histone antibodies, histone-binding proteins or molecules, and histone-affinity hemoadsorption in pre-clinical studies. Finally, challenges and future perspectives for improving the clinical translation of histone-targeting therapeutic strategies are also discussed to promote better management of patients with histone-related diseases.
Assuntos
Histonas , Inflamação , Humanos , Histonas/metabolismo , Animais , Inflamação/imunologia , Inflamação/terapia , Estado Terminal , Heparina/uso terapêuticoRESUMO
Tartrolon D (TRL) is produced by Teredinibacter turnerae, a symbiotic cellulose-degrading bacteria in shipworm gills. Immunogenic cell death (ICD) induction contributes to a better and longer-lasting response to anticancer treatment. Tumor cells undergoing ICD trigger activation of the immune system, as a vaccine. AIMS: This study aimed to evaluate ICD induction by TRL. MAIN METHODS: Cell viability was evaluated by SRB assay. Cell stress, cell death, ICD features and antigen-presenting molecules were evaluated by flow cytometry and immunoblot. KEY FINDINGS: TRL showed antiproliferative activity on 7 tumor cell lines (L929, HCT 116, B16-F10, WM293A, SK-MEL-28, PC-3M, and MCF-7) and a non-tumor cell (HEK293A), with an inhibition concentration mean (IC50) ranging from 0.03 µM to 13 µM. Metastatic melanomas, SK-MEL-28, B16-F10, and WM293A, were more sensitive cell lines, with IC50 ranging from 0.07 to 1.2 µM. TRL induced apoptosis along with autophagy and endoplasmic reticulum stress and release of typical damage-associated molecular patterns (DAMPs) of ICD such calreticulin, ERp57, and HSP70 exposure, and HMGB1 release. Additionally, melanoma B16-F10 exposed to TRL increased expression of antigen-presenting molecules MHC II and CD1d and induced activation of splenocytes of C57BL/6 mice. SIGNIFICANCE: In spite of recent advances provided by target therapy and immunotherapy, advanced metastatic melanoma is incurable for more than half of patients. ICD inducers yield better and long-lasting responses to anticancer treatment. Our findings shed light on an anticancer candidate of marine origin that induces ICD in melanoma.
Assuntos
Morte Celular Imunogênica , Melanoma , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Linhagem Celular Tumoral , Melanoma/imunologia , Melanoma/patologia , Melanoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camundongos , Autofagia/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Calreticulina/metabolismoRESUMO
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Morte Celular Imunogênica/efeitos dos fármacos , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacosRESUMO
The tumor microenvironment (TME) is a dynamic and complex system that undergoes continuous changes in its network architecture, notably affecting redox homeostasis. These alterations collectively shape a diverse ecosystem actively supporting tumor progression by influencing the cellular and molecular components of the TME. Despite the remarkable clinical advancements in cancer immunotherapy, its spectrum of clinical utility is limited by the altered TME and inadequate tumor immunogenicity. Recent studies have revealed that some conventional and targeted therapy strategies can augment the efficacy of immunotherapy even in patients with less immunogenic solid tumors. These strategies provoke immunogenic cell death (ICD) through the ROS-dependent liberation of damage-associated molecular patterns (DAMPs). These DAMPs recognize and bind with Pattern Recognition Receptors (PRRs) on immune cells, activating and maturing defense cells, ultimately leading to a robust antitumor immune response. The present review underscores the pivotal role of redox homeostasis in orchestrating the transition of TME from a cold to a hot phenotype and the ROS-ICD axis in immune response induction. Additionally, it provides up-to-date insights into strategies that leverage ROS generation to induce ICD. The comprehensive analysis aims to develop ROS-based effective cancer immunotherapies for less immunogenic tumors.
Assuntos
Morte Celular Imunogênica , Imunoterapia , Neoplasias , Espécies Reativas de Oxigênio , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , AnimaisRESUMO
BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by recurrent eczematous lesions and severe pruritus. The economic burden and time penalty caused by the relapse of AD reduce patients' life quality. SUMMARY: AD has complex pathogenesis, including genetic disorders, epidermal barrier dysfunction, abnormal immune responses, microbial dysbiosis of the skin, and environmental factors. Recently, the role of innate immune cells in AD has attracted considerable attention. This review highlighted recent findings on innate immune cells in the onset and progression of AD. KEY MESSAGES: Innate immune cells play essential roles in the pathogenesis of AD and enough attention should be given for treating AD from the perspective of innate immunity in clinics.
Assuntos
Dermatite Atópica , Imunidade Inata , Dermatite Atópica/imunologia , Humanos , Animais , Pele/imunologia , Pele/patologiaRESUMO
Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, µ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.
Assuntos
Inflamação , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/imunologia , Animais , Inflamação/imunologia , Inflamação/tratamento farmacológico , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismoRESUMO
BACKGROUND: Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression. METHODS: Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort. RESULTS: Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients. CONCLUSIONS: Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.
RESUMO
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
RESUMO
Cytokine release syndrome (CRS) is a systemic inflammatory syndrome that causes fatal circulatory failure due to hypercytokinemia, and subsequent immune cell hyperactivation caused by therapeutic agents, pathogens, cancers, and autoimmune diseases. In recent years, CRS has emerged as a rare, but significant, immune-related adverse event linked to immune checkpoint inhibitor therapy. Furthermore, several previous studies suggested that damage-associated molecular patterns (DAMPs) could be involved in malignancy-related CRS. In this study, we present a case of severe CRS following combination therapy with durvalumab and tremelimumab for advanced hepatocellular carcinoma, which recurred during treatment, as well as an analysis of cytokine and DAMPs trends. A 35-year-old woman diagnosed with hepatocellular carcinoma underwent a partial hepatectomy. Due to cancer recurrence, she started a combination of durvalumab and tremelimumab. Then, 29 days post-administration, she developed fever and headache, initially suspected as sepsis. Despite antibiotics, her condition worsened, leading to disseminated intravascular coagulation and hemophagocytic syndrome. The clinical course and elevated serum interleukin-6 levels led to a CRS diagnosis. Steroid pulse therapy was administered, resulting in temporary improvement. However, she relapsed with increased interleukin-6, prompting tocilizumab treatment. Her condition improved, and she was discharged on day 22. Measurements of inflammatory cytokines interferon-γ, tumor necrosis factor-α, and DAMPs, along with interleukin-6, using preserved serum samples, confirmed marked elevation at CRS onset. CRS can occur after the administration of any immune checkpoint inhibitor, with the most likely trigger being the release of DAMPs associated with tumor collapse.
RESUMO
Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.
Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Humanos , Membrana Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Animais , Fatores de Crescimento Neural/metabolismo , ApoptoseRESUMO
Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.