Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555472

RESUMO

Protein domains are independent structural and functional modules that can rearrange to create new proteins. While the evolution of multidomain proteins through the shuffling of different preexisting domains has been well documented, the evolution of domain repeat proteins and the origin of new domains are less understood. Metallothioneins (MTs) provide a good case study considering that they consist of metal-binding domain repeats, some of them with a likely de novo origin. In mollusks, for instance, most MTs are bidomain proteins that arose by lineage-specific rearrangements between six putative domains: α, ß1, ß2, ß3, γ and δ. Some domains have been characterized in bivalves and gastropods, but nothing is known about the MTs and their domains of other Mollusca classes. To fill this gap, we investigated the metal-binding features of NpoMT1 of Nautilus pompilius (Cephalopoda class) and FcaMT1 of Falcidens caudatus (Caudofoveata class). Interestingly, whereas NpoMT1 consists of α and ß1 domains and has a prototypical Cd2+ preference, FcaMT1 has a singular preference for Zn2+ ions and a distinct domain composition, including a new Caudofoveata-specific δ domain. Overall, our results suggest that the modular architecture of MTs has contributed to MT evolution during mollusk diversification, and exemplify how modularity increases MT evolvability.


Assuntos
Gastrópodes , Metais , Animais , Metais/metabolismo , Metalotioneína/metabolismo , Domínios Proteicos , Gastrópodes/genética , Gastrópodes/metabolismo , Cádmio/metabolismo
2.
FEBS J ; 285(14): 2605-2625, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29802682

RESUMO

Over long time scales, protein evolution is characterized by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 mya. We use established domain models and foldable domains delineated by hydrophobic cluster analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, that is, from previously noncoding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonization of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multidomain arrangements. Young domains, such as most HCA-defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of de novo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterized by cross-species comparisons alone.


Assuntos
Sequência de Bases , Evolução Molecular , Genoma de Inseto , Proteínas de Insetos/química , Insetos/genética , Deleção de Sequência , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Éxons , Duplicação Gênica , Expressão Gênica , Fusão Gênica , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/classificação , Íntrons , Filogenia , Domínios Proteicos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA