Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.401
Filtrar
1.
Mater Today Bio ; 27: 101151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104900

RESUMO

Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.

2.
Regen Med ; : 1-17, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101556

RESUMO

The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.


Unconventional scaffolds have the potential to meet the current challenges in liver tissue engineering- loss of hepatic morphology and functions over long-term culture, absence of native-like cell-cell and cell-matrix interactions, organization of hepatocytes into lobular structures exhibiting metabolic variations-which hinder pharmaceutical analysis, regenerative therapies and artificial organ development. Paper with cellulose microfibril network develops cellular aggregates with hypoxic conditions that influence enzymes of xenobiotic metabolism proving to be a better scaffold for hepatotoxicity testing compared with conventional monolayers in tissue culture plates. Decellularized plant stems provide already-built vasculature to be exploited for the development of intricate vessel networks that exist in hepatic lobules aiding in regenerative medicine for hepatic pathologies. Fibrous plant structures are excellent materials for the immobilization of hepatocytes and improve albumin secretion enabling their use in bioartificial liver development. Biomimicry of metabolic zonation in hepatic lobules can be achieved with perfusion culture using silk blend scaffolds with varying proportions of the liver matrix that orchestrate cellular function. The mechanical properties of silk allow the fabrication of structures that resemble liver anatomy to generate native-like hepatic lobules. Nanomaterials have immense potential as a component of composite material development for scaffolds to achieve improved predictive ability in pharmacokinetics. Most of these unconventional scaffolds have the added advantage of being readily available, accessible, affordable and sustainable for liver tissue engineering applications. Conclusively, the shift of attention away from conventional scaffolds poses a promising future in the field of tissue engineering.

3.
Int Dent J ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39112112

RESUMO

OBJECTIVES: This study describes a robust and versatile method for decellularization of rat submandibular glands (SMGs). METHODS: Briefly, rat SMGs were harvested and subjected to perfusion cycles using an anionic detergent. Native and decellularized SMG tissues were subjected to histological analysis using hematoxylin and eosin (H&E) stain and immunohistochemical staining using Hoescht reagent. Further, complementary DNA was synthesized using the native and decellularized SMG tissues and subjected to quantitative reverse transcription polymerase chain reaction (RT-PCR) using rat-specific genes (i.e., α-amylase [Amyl], aquaporin 5 [Aqp5], mucin 19 [Muc19] and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]). The total DNA within native and decellularized SMG tissues were also quantified. RESULTS: H&E staining of SMG tissues revealed preserved ECM content. Decellularized SMG scaffolds lacked cellular material but retained collagen bundles similar to native SMGs. Hoechst reagent immunostaining showed cell nuclei and DNA present in native SMG but not in decellularized SMG scaffolds. Quantitative RT-PCR analysis showed specific amplification products of salivary gland-specific genes (Amyl, Muc19 and Aqp5) and GAPDH in the native SMG tissues. However, no amplification product was observed in the cDNAs from the decellularized SMG scaffolds, confirming the absence of DNA. Quantification of the DNA content showed that the decellularized SMG scaffolds had significantly lower DNA content than native SMG tissue. CONCLUSIONS: Results from this study demonstrated that the decellularization protocol was effective in removing cellular material while preserving the extracellular matrix components and structural integrity of the native SMG tissue.

4.
Biomaterials ; 312: 122741, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39121727

RESUMO

Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.

5.
F1000Res ; 13: 554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155967

RESUMO

Chronic respiratory diseases often necessitate lung transplantation due to irreversible damage. Organ engineering offers hope through stem cell-based organ generation. However, the crucial sterilization step in scaffold preparation poses challenges. This study conducted a systematic review of studies that analysed the extracellular matrix (ECM) conditions of decellularised lungs subjected to different sterilisation processes. A search was performed for articles published in the PubMed, Web of Sciences, Scopus, and SciELO databases according to the PRISMA guidelines. Overall, five articles that presented positive results regarding the effectiveness of the sterilisation process were selected, some of which identified functional damage in the ECM. Was possible concluded that regardless of the type of agent used, physical or chemical, all of them demonstrated that sterilisation somehow harms the ECM. An ideal protocol has not been found to be fully effective in the sterilisation of pulmonary scaffolds for use in tissue and/or organ engineering.


Assuntos
Matriz Extracelular , Pulmão , Esterilização , Alicerces Teciduais , Esterilização/métodos , Humanos , Engenharia Tecidual/métodos , Animais
6.
Adv Biol (Weinh) ; : e2400208, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162336

RESUMO

The management of extensive tracheal resection followed by circumferential replacement remains a surgical challenge. Numerous techniques are proposed with mixed results. Partial decellularization of the trachea with the removal of the mucosal and submucosal cells is a promising method, reducing immunogenicity while preserving the biomechanical properties of the final matrix. Despite many research protocols and proofs of concept, no standardized clinical grade protocol is described. Furthermore, local and systemic biointegration mechanisms of decellularized trachea are not well known. Therefore, in a translational research perspective, this work set up a partial tracheal decellularization protocol in line with Cell and Tissue Products regulations. Extensive characterization of the final product is performed in vitro and in vivo. The results show that the Partially Decellularized Trachea (PDT) is cell-free in the mucosa and submucosa, while the cartilage structure is preserved, maintaining the biomechanical properties of the trachea. When implanted in the muscle in vivo for 28 days, no systemic inflammation is observed, and locally, the PDT shows an excellent biointegration and vascularization. No signs of graft rejection are observed. These encouraging results confirmed the efficacy of the clinical grade PDT production protocol, which is an important step for future clinical applications.

7.
Adv Healthc Mater ; : e2401150, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021293

RESUMO

Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.

8.
Biomimetics (Basel) ; 9(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39056823

RESUMO

The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.

9.
Biomimetics (Basel) ; 9(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39056846

RESUMO

The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.05% sodium dodecyl sulfate solution. The UC-scaffold was studied using morphological analysis methods. The composition of the UC-scaffold was studied using immunoblotting and Fourier transform infrared spectroscopy. The adhesion and proliferation of mesenchymal stromal cells were investigated using the LIVE/DEAD assay. The local reaction was determined by subcutaneous implantation in mice (n = 60). A model of a full-thickness skin wound in mice (n = 64) was used to assess the biological activity of the UC-scaffold. The proposed decellularization method showed its effectiveness in the umbilical cord, as it removed cells and retained a porous structure, type I and type IV collagen, TGF-ß3, VEGF, and fibronectin in the ECM. The biodegradation of the UC-scaffold in the presence of collagenase, its stability during incubation in hyaluronidase solution, and its ability to swell by 1617 ± 120% were demonstrated. Subcutaneous scaffold implantation in mice showed gradual resorption of the product in vivo without the formation of a dense connective tissue capsule. Epithelialization of the wound occurred completely in contrast to the controls. All of these data suggest a potential for the use of the UC-scaffold.

10.
Curr Issues Mol Biol ; 46(7): 7686-7701, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057096

RESUMO

The importance of decellularized extracellular matrix (dECM) as a natural biomaterial in tissue engineering and regenerative medicine is rapidly growing. The core objective of the decellularization process is to eliminate cellular components while maximizing the preservation of the ECM's primary structure and components. Establishing a rapid, effective, and minimally destructive decellularization technique is essential for obtaining high-quality dECM to construct regenerative organs. This study focused on human umbilical cord tissue, designing different reagent combinations for decellularization protocols while maintaining a consistent processing time. The impact of these protocols on the decellularization efficiency of human umbilical cord tissue was evaluated. The results suggested that the composite decellularization strategy utilizing trypsin/EDTA + Triton X-100 + sodium deoxycholate was the optimal approach in this study for preparing decellularized human umbilical cord dECM. After 5 h of decellularization treatment, most cellular components were eliminated, confirmed through dsDNA quantitative detection, hematoxylin and eosin (HE) staining, and DAPI staining. Meanwhile, Masson staining, periodic acid-silver methenamine (PASM) staining, periodic acid-Schiff (PAS) staining, and immunofluorescent tissue section staining results revealed that the decellularized scaffold retained extracellular matrix components, including collagen and glycosaminoglycans (GAGs). Compared to native umbilical cord tissue, electron microscopy results demonstrated that the microstructure of the extracellular matrix was well preserved after decellularization. Furthermore, Fourier-transform infrared spectroscopy (FTIR) findings indicated that the decellularization process successfully retained the main functional group structures of extracellular matrix (ECM) components. The quantitative analysis of collagen, elastin, and GAG content validated the advantages of this decellularization process in preserving and purifying ECM components. Additionally, it was confirmed that this decellularized matrix exhibited no cytotoxicity in vitro. This study achieved short-term decellularization preparation for umbilical cord tissue through a combined decellularization strategy.

11.
Int J Biol Macromol ; 276(Pt 1): 133775, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986979

RESUMO

Barrier membranes play a prominent role in guided bone regeneration (GBR), and polycaprolactone (PCL) is an attractive biomaterial for the fabrication of barrier membranes. However, these nanofiber membranes (NFMs) require modification to improve their biological activity. PCL-NFMs incorporating with laponite (LAP) achieve biofunctional modification. Decellularized extracellular matrix (dECM) could modulate cell behaviour. The present study combined dECM with PCL/LAP-NFMs to generate a promising strategy for bone tissue regeneration. Bone marrow mesenchymal stem cells (BMSCs) were cultured on NFMs and deposited with an abundant extracellular matrix (ECM), which was subsequently decellularized to obtain dECM-modified PCL/LAP-NFMs (PCL/LAP-dECM-NFMs). The biological functions of the membranes were evaluated by reseeding MC3T3-E1 cells in vitro and transplanting them into rat calvarial defects in vivo. These results indicate that PCL/LAP-dECM-NFMs were successfully constructed. The presence of dECM slightly improved the mechanical properties of the NFMs, which exhibited a Young's modulus of 0.269 MPa, ultimate tensile strength of 2.04 MPa and elongation at break of 51.62 %. In vitro, the PCL/LAP-dECM-NFMs had favourable cytocompatibility, and the enhanced hydrophilicity was conducive to cell adhesion, proliferation, and osteoblast differentiation. PCL/LAP-dECM-NFMs exhibited an excellent bone repair capacity in vivo. Overall, dECM-modified PCL/LAP-NFMs should be promising biomimetic barrier membranes for GBR.

12.
Front Bioeng Biotechnol ; 12: 1413518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983603

RESUMO

Over the past few decades, there has been a remarkable advancement in the field of transplantation. But the shortage of donors is still an urgent problem that requires immediate attention. As with xenotransplantation, bioengineered organs are promising solutions to the current shortage situation. And decellularization is a unique technology in organ-bioengineering. However, at present, there is no unified decellularization method for different tissues, and there is no gold-standard for evaluating decellularization efficiency. Meanwhile, recellularization, re-endothelialization and modification are needed to form transplantable organs. With this mind, we can start with decellularization and re-endothelialization or modification of small blood vessels, which would serve to address the shortage of small-diameter vessels while simultaneously gathering the requisite data and inspiration for further recellularization of the whole organ-scale vascular network. In this review, we collect the related experiments of decellularization and post-decellularization approaches of small vessels in recent years. Subsequently, we summarize the experience in relation to the decellularization and post-decellularization combinations, and put forward obstacle we face and possible solutions.

13.
Int J Biol Macromol ; : 133830, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002914

RESUMO

As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.

14.
J Med Signals Sens ; 14: 10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993202

RESUMO

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.

16.
Bioact Mater ; 40: 280-305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973992

RESUMO

Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.

17.
ACS Biomater Sci Eng ; 10(8): 5154-5167, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39079153

RESUMO

There remains a lack of small-caliber tissue-engineered blood vessels (TEBVs) with wide clinical use. Biotubes were developed by electrospinning and in-body tissue architecture (iBTA) technology to prepare small-caliber TEBVs with promising applications. Different ratios of hybrid fibers of poly(l-lactic-co-ε-caprolactone) (PLCL) and polyurethane (PU) were obtained by electrospinning, and the electrospun tubes were then implanted subcutaneously in the abdominal area of a rabbit (as an in vivo bioreactor). The biotubes were harvested after 4 weeks. They were then decellularized and cross-linked with heparin. PLCL/PU electrospun vascular tubes, decellularized biotubes (D-biotubes), and heparinized combined decellularized biotubes (H + D-biotubes) underwent carotid artery allograft transplantation in a rabbit model. Vascular ultrasound follow-up and histological observation revealed that the biotubes developed based on electrospinning and iBTA technology, after decellularization and heparinization cross-linking, showed a better patency rate, adequate mechanical properties, and remodeling ability in the rabbit model. IBTA technology caused a higher patency, and the heparinization cross-linking process gave the biotubes stronger mechanical properties.


Assuntos
Prótese Vascular , Heparina , Poliésteres , Engenharia Tecidual , Animais , Coelhos , Engenharia Tecidual/métodos , Heparina/química , Poliésteres/química , Aloenxertos , Poliuretanos/química , Alicerces Teciduais/química , Artérias Carótidas
18.
Bioengineering (Basel) ; 11(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39061783

RESUMO

Small-diameter vascular grafts (SDVGs) are severely lacking in clinical settings. Therefore, our study investigates a new source of biological vessels-bovine and porcine decellularized intercostal arteries (DIAs)-as potential SDVGs. We utilized a combination of SDS and Triton X-100 to perfuse the DIAs, establishing two different time protocols. The results show that perfusing with 1% concentrations of each decellularizing agent for 48 h yields DIAs with excellent biocompatibility and mechanical properties. The porcine decellularized intercostal arteries (PDIAs) we obtained had a length of approximately 14 cm and a diameter of about 1.5 mm, while the bovine decellularized intercostal arteries (BDIAs) were about 29 cm long with a diameter of approximately 2.2 mm. Although the lengths and diameters of both the PDIAs and BDIAs are suited for coronary artery bypass grafting (CABG), as the typical diameter of autologous arteries used in CABG is about 2 mm and the grafts required are at least 10 cm long, our research indicates that BDIAs possess more ideal mechanical characteristics for CABG than PDIAs, showing significant potential. Further enhancements may be necessary to address their limited hemocompatibility.

19.
Ann Biomed Eng ; 52(9): 2325-2347, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39085677

RESUMO

Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.


Assuntos
Músculo Esquelético , Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Animais , Regeneração
20.
Bone ; 187: 117213, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084545

RESUMO

Critical bone loss can have several origins: infections, tumors or trauma. Therefore, massive bone allograft can be a solution for limb salvage. Such a biological reconstruction should have the ideal biomechanical qualities. However, their complication rate remains too high. Perfusion-decellularization of massive allografts could promote the vitality of these grafts, thereby improving their integration and bone remodeling. Three perfusion-decellularized massive bone allografts were compared to 3 fresh frozen massive bone allografts in a preclinical in vivo porcine study using an orthopedic surgery model. Three pigs each underwent a critical diaphyseal femoral defects followed by an allogeneic intercalary femoral graft on their both femurs (one decellularized and one conventional fresh frozen as "native") to reconstruct the defect. Clinical imaging was performed over 3 months of follow-up. The grafts were then explanted and examined by non-decalcified histology, fluoroscopic microscopy and immunohistochemistry. Bone consolidation was achieved in both groups at the same time. However, the volume of bone callus appeared to be greater in the decellularized group. Histology demonstrated a superior bone remodeling in the decellularized group, with a higher number of osteoclasts (p < 0.001) and larger areas of osteoid matrix and newly formed bone as compared to the "native" group. Immunohistochemistry showed a superior vitality and remodeling in both the cortical and medullary cavities for osteocalcin (p < 0.001), Ki67 (p < 0.001), CD3 (p < 0.001) and α-SMA (p < 0.001) as compared the "native" group. Three months after implantation, the decellularized grafts were proven to be biologically more active compared to native grafts. Fluoroscopic microscopy revealed more ossification fronts in the depth of the decellularized grafts (p = 0.021). This pilot study provides the first in vivo demonstration on the enhanced biological capacities of massive bone allograft decellularized by perfusion as compared to conventional massive bone allografts.


Assuntos
Aloenxertos , Transplante Ósseo , Animais , Transplante Ósseo/métodos , Projetos Piloto , Suínos , Fêmur/patologia , Fêmur/diagnóstico por imagem , Remodelação Óssea/fisiologia , Transplante Homólogo/métodos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA