Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Dent Educ ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327675

RESUMO

PURPOSE AND OBJECTIVE: Objective, valid, and reliable evaluations are needed in order to develop haptic skills in dental education. The aim of this study is to investigate the validity and reliability of the machine learning method in evaluating the haptic skills of dentistry students. MATERIALS AND METHODS: One-hundred fifty 6th semester dental students have performed Class II amalgam (C2A) and composite resin restorations (C2CR), in which all stages were evaluated with Direct Observation Practical Skills forms. The final phase was graded by three trainers and supervisors separately. Standard photographs of the restorations in the final stage were taken from different angles in a special setup and transferred to the Python program which utilized the Structural Similarity algorithm to calculate both the quantitative (numerical) and qualitative (visual) differences of each restoration. The validity and reliability analyses of inter-examiner evaluation were tested by Cronbach's Alpha and Kappa statistics (p = 0.05). RESULTS: The intra-examiner reliability between Structural Similarity Index (SSIM) and examiners was found highly reliable in both C2A (α = 0.961) and C2CR (α = 0.856). The compatibility of final grades given by SSIM (53.07) and examiners (56.85) was statistically insignificant (p > 0.05). A significant difference was found between the examiners and SSIM when grading the occlusal surfaces in C2A and on the palatal surfaces of C2CR (p < 0.05). The concordance of observer assessments was found almost perfect in C2A (κ = 0.806), and acceptable in C2CR (κ = 0.769). CONCLUSION: Although deep machine learning is a promising tool in the evaluation of haptic skills, further improvement and alignments are required for fully objective and reliable validation in all cases of dental training in restorative dentistry.

2.
Plants (Basel) ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124147

RESUMO

It is generally recognized that the quality differences in plant germplasm resources are genetically determined, and that only a good "pedigree" can have good quality. Ecological memory of plants and rhizosphere soil fungi provides a new perspective to understand this phenomenon. Here, we selected 45 tea tree germplasm resources and analyzed the rhizosphere soil fungi, nutrient content and tea quality. We found that the ecological memory of tea trees for soil fungi led to the recruitment and aggregation of dominant fungal populations that were similar across tea tree varieties, differing only in the number of fungi. We performed continuous simulation and validation to identify four characteristic fungal genera that determined the quality differences. Further analysis showed that the greater the recruitment and aggregation of Saitozyma and Archaeorhizomyces by tea trees, the greater the rejection of Chaetomium and Trechispora, the higher the available nutrient content in the soil and the better the tea quality. In summary, our study presents a new perspective, showing that ecological memory between tea trees and rhizosphere soil fungi leads to differences in plants' ability to recruit and aggregate characteristic fungi, which is one of the most important determinants of tea quality. The artificial inoculation of rhizosphere fungi may reconstruct the ecological memory of tea trees and substantially improve their quality.

3.
Plants (Basel) ; 13(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065525

RESUMO

Leaf senescence is a complex trait which becomes crucial for grain filling because photoassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and phenological stages is necessary to obtain increasing yields. In this study, we evaluated the performance of five deep machine-learning methods for the evaluation of the phenological stages of sunflowers using images taken with cell phones in the field. From the analysis, we found that the method based on the pre-trained network resnet50 outperformed the other methods, both in terms of accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in phenological stages, confirming the results obtained in previous studies. A database with 5000 images was generated and was classified by an expert. This is important to end the subjectivity involved in decision making regarding the progression of this trait in the field and could be correlated with performance and senescence parameters that are highly associated with yield increase.

4.
Cureus ; 16(5): e61379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947677

RESUMO

Leukemia is a rare but fatal cancer of the blood. This cancer arises from abnormal bone marrow cells and requires prompt diagnosis for effective treatment and positive patient prognosis. Traditional diagnostic methods (e.g., microscopy, flow cytometry, and biopsy) pose challenges in both accuracy and time, demanding an inquisition on the development and use of deep learning (DL) models, such as convolutional neural networks (CNN), which could allow for a faster and more exact diagnosis. Using specific, objective criteria, DL might hold promise as a tool for physicians to diagnose leukemia. The purpose of this review was to report the relevant available published literature on using DL to diagnose leukemia. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, articles published between 2010 and 2023 were searched using Embase, Ovid MEDLINE, and Web of Science, searching the terms "leukemia" AND "deep learning" or "artificial neural network" OR "neural network" AND "diagnosis" OR "detection." After screening retrieved articles using pre-determined eligibility criteria, 20 articles were included in the final review and reported chronologically due to the nascent nature of the phenomenon. The initial studies laid the groundwork for subsequent innovations, illustrating the transition from specialized methods to more generalized approaches capitalizing on DL technologies for leukemia detection. This summary of recent DL models revealed a paradigm shift toward integrated architectures, resulting in notable enhancements in accuracy and efficiency. The continuous refinement of models and techniques, coupled with an emphasis on simplicity and efficiency, positions DL as a promising tool for leukemia detection. With the help of these neural networks, leukemia detection could be hastened, allowing for an improved long-term outlook and prognosis. Further research is warranted using real-life scenarios to confirm the suggested transformative effects DL models could have on leukemia diagnosis.

5.
Environ Pollut ; 356: 124292, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823545

RESUMO

Oceans are ultimately a sink of plastic waste. Complex artificial coastlines pose remarkable challenges for coastal plastic waste monitoring. With the development of machine learning methods, high detection accuracy can be achieved; however, many false positives have been noted in various network models used for plastic waste investigation. In this study, extensive surveys of artificial coastlines were conducted using drones along the Dongjiang Port artificial coastline in the Binhai District, Tianjin, China. The deep learning model YOLOv8 was enhanced by integrating the InceptionNeXt and LSK modules into the network to improve its detection accuracy for plastic waste and reduce instances of tourists being misidentified as plastic. In total, 553 high-resolution coastline images with 3488 items of detected plastic waste were compared using the original and improved YOLOv8 models. The improved YOLOv8s-IL model achieved a detection rate of 64.9%, a notable increase of 11.5% compared with that of the original model. The number of false positives in the improved YOLOv8s-IL model was reduced to 32.3%, the multi-class F-score reached 76.5%, and the average detection time per image was only 2.7 s. The findings of this study provide technical support for future large-scale monitoring of plastic waste on artificial coastlines.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Plásticos , Plásticos/análise , China , Monitoramento Ambiental/métodos , Turismo
6.
Arkh Patol ; 86(2): 65-71, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591909

RESUMO

The review presents key concepts and global developments in the field of artificial intelligence used in pathological anatomy. The work examines two types of artificial intelligence (AI): weak and strong ones. A review of experimental algorithms using both deep machine learning and computer vision technologies to work with WSI images of preparations, diagnose and make a prognosis for various malignant neoplasms is carried out. It has been established that weak artificial intelligence at this stage of development of computer (digital) pathological anatomy shows significantly better results in speeding up and refining diagnostic procedures than strong artificial intelligence having signs of general intelligence. The article also discusses three options for the further development of AI assistants for pathologists based on the technologies of large language models (strong AI) ChatGPT (PathAsst), Flan-PaLM2 and LIMA. As a result of the analysis of the literature, key problems in the field were identified: the equipment of pathology institutions, the lack of experts in training neural networks, the lack of strict criteria for the clinical viability of AI diagnostic technologies.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Algoritmos , Aprendizado de Máquina
7.
Front Aging Neurosci ; 16: 1345417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469163

RESUMO

Introduction: Efforts to develop cost-effective approaches for detecting amyloid pathology in Alzheimer's disease (AD) have gained significant momentum with a focus on biomarker classification. Recent research has explored non-invasive and readily accessible biomarkers, including magnetic resonance imaging (MRI) biomarkers and some AD risk factors. Methods: In this comprehensive study, we leveraged a diverse dataset, encompassing participants with varying cognitive statuses from multiple sources, including cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and our in-house Dementia Disease Initiation (DDI) cohort. As brain amyloid plaques have been proposed as sufficient for AD diagnosis, our primary aim was to assess the effectiveness of multimodal biomarkers in identifying amyloid plaques, using deep machine learning methodologies. Results: Our findings underscore the robustness of the utilized methods in detecting amyloid beta positivity across multiple cohorts. Additionally, we investigated the potential of demographic data to enhance MRI-based amyloid detection. Notably, the inclusion of demographic risk factors significantly improved our models' ability to detect amyloid-beta positivity, particularly in early-stage cases, exemplified by an average area under the ROC curve of 0.836 in the unimpaired DDI cohort. Discussion: These promising, non-invasive, and cost-effective predictors of MRI biomarkers and demographic variables hold the potential for further refinement through considerations like APOE genotype and plasma markers.

8.
BMC Bioinformatics ; 25(1): 103, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459463

RESUMO

BACKGROUND: Blood test is extensively performed for screening, diagnoses and surveillance purposes. Although it is possible to automatically evaluate the raw blood test data with the advanced deep self-supervised machine learning approaches, it has not been profoundly investigated and implemented yet. RESULTS: This paper proposes deep machine learning algorithms with multi-dimensional adaptive feature elimination, self-feature weighting and novel feature selection approaches. To classify the health risks based on the processed data with the deep layers, four machine learning algorithms having various properties from being utterly model free to gradient driven are modified. CONCLUSIONS: The results show that the proposed deep machine learning algorithms can remove the unnecessary features, assign self-importance weights, selects their most informative ones and classify the health risks automatically from the worst-case low to worst-case high values.


Assuntos
Algoritmos , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado
10.
Acta Biomater ; 170: 240-249, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634832

RESUMO

The bone-periodontal ligament-tooth (BPT) complex is a unique mechanosensing soft-/hard-tissue interface, which governs the most rapid bony homeostasis in the body responding to external loadings. While the correlation between such loading and alveolar bone remodelling has been widely recognised, it has remained challenging to investigate the transmitted mechanobiological stimuli across such embedded soft-/hard-tissue interfaces of the BPT complex. Here, we propose a framework combining three distinct bioengineering techniques (i, ii, and iii below) to elucidate the innate functional non-uniformity of the PDL in tuning mechanical stimuli to the surrounding alveolar bone. The biphasic PDL mechanical properties measured via nanoindentation, namely the elastic moduli of fibres and ground substance at the sub-tissue level (i), were used as the input parameters in an image-based constitutive modelling framework for finite element simulation (ii). In tandem with U-net deep learning, the Gaussian mixture method enabled the comparison of 5195 possible pseudo-microstructures versus the innate non-uniformity of the PDL (iii). We found that the balance between hydrostatic pressure in PDL and the strain energy in the alveolar bone was maintained within a specific physiological range. The innate PDL microstructure ensures the transduction of favourable mechanobiological stimuli, thereby governing alveolar bone homeostasis. Our outcomes expand current knowledge of the PDL's mechanobiological roles and the proposed framework can be adopted to a broad range of similar soft-/hard- tissue interfaces, which may impact future tissue engineering, regenerative medicine, and evaluating therapeutic strategies. STATEMENT OF SIGNIFICANCE: A combination of cutting-edge technologies, including dynamic nanomechanical testing, high-resolution image-based modelling and machine learning facilitated computing, was used to elucidate the association between the microstructural non-uniformity and biomechanical competence of periodontal ligaments (PDLs). The innate PDL fibre network regulates mechanobiological stimuli, which govern alveolar bone remodelling, in different tissues across the bone-PDL-tooth (BPT) interfaces. These mechanobiological stimuli within the BPT are tuned within a physiological range by the non-uniform microstructure of PDLs, ensuring functional tissue homeostasis. The proposed framework in this study is also applicable for investigating the structure-function relationship in broader types of fibrous soft-/hard- tissue interfaces.

11.
Multimed Tools Appl ; : 1-54, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37362676

RESUMO

This review investigates how Deep Machine Learning (DML) has dealt with the Covid-19 epidemic and provides recommendations for future Covid-19 research. Despite the fact that vaccines for this epidemic have been developed, DL methods have proven to be a valuable asset in radiologists' arsenals for the automated assessment of Covid-19. This detailed review debates the techniques and applications developed for Covid-19 findings using DL systems. It also provides insights into notable datasets used to train neural networks, data partitioning, and various performance measurement metrics. The PRISMA taxonomy has been formed based on pretrained(45 systems) and hybrid/custom(17 systems) models with radiography modalities. A total of 62 systems with respect to X-ray(32), CT(19), ultrasound(7), ECG(2), and genome sequence(2) based modalities as taxonomy are selected from the studied articles. We originate by valuing the present phase of DL and conclude with significant limitations. The restrictions contain incomprehensibility, simplification measures, learning from incomplete labeled data, and data secrecy. Moreover, DML can be utilized to detect and classify Covid-19 from other COPD illnesses. The proposed literature review has found many DL-based systems to fight against Covid19. We expect this article will assist in speeding up the procedure of DL for Covid-19 researchers, including medical, radiology technicians, and data engineers.

12.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175454

RESUMO

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric regulation, the emerging structural biology technologies and AI approaches remains largely unexplored, calling for the development of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable progress in deep high-throughput mining and comprehensive mapping of allosteric protein landscapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for prediction and characterization of allosteric binding sites on the proteome level. We also discuss new AI-augmented structural biology approaches that expand our knowledge of the universe of protein dynamics and allostery. We conclude with an outlook and highlight the importance of developing an open science infrastructure for machine learning studies of allosteric regulation and validation of computational approaches using integrative studies of allosteric mechanisms. The development of community-accessible tools that uniquely leverage the existing experimental and simulation knowledgebase to enable interrogation of the allosteric functions can provide a much-needed boost to further innovation and integration of experimental and computational technologies empowered by booming AI field.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Sítio Alostérico , Big Data , Proteínas/química
13.
Ecol Evol ; 13(5): e9987, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143991

RESUMO

Given the sharp increase in agricultural and infrastructure development and the paucity of widespread data available to support conservation management decisions, a more rapid and accurate tool for identifying fish fauna in the world's largest freshwater ecosystem, the Amazon, is needed. Current strategies for identification of freshwater fishes require high levels of training and taxonomic expertise for morphological identification or genetic testing for species recognition at a molecular level. To overcome these challenges, we built an image masking model (U-Net) and a convolutional neural net (CNN) to classify Amazonian fish in photographs. Fish used to generate training data were collected and photographed in tributaries in seasonally flooded forests of the upper Morona River valley in Loreto, Peru in 2018 and 2019. Species identifications in the training images (n = 3068) were verified by expert ichthyologists. These images were supplemented with photographs taken of additional Amazonian fish specimens housed in the ichthyological collection of the Smithsonian's National Museum of Natural History. We generated a CNN model that identified 33 genera of fishes with a mean accuracy of 97.9%. Wider availability of accurate freshwater fish image recognition tools, such as the one described here, will enable fishermen, local communities, and citizen scientists to more effectively participate in collecting and sharing data from their territories to inform policy and management decisions that impact them directly.


Dado el aumento del desarrollo agrícola e infraestructura y la escasa información disponible para apoyar la toma de decisiones con respecto al manejo y la conservación de la fauna, es necesario contar con una herramienta más rápida y precisa para la identificación de peces en el ecosistema de agua dulce más grande del mundo, la Amazonía. Las estrategias actuales para la identificación de peces de agua dulce requieren altos niveles de capacitación y experiencia taxonómica para la identificación morfológica o las pruebas genéticas para el reconocimiento de especies a nivel molecular. Para superar estos desafíos, construimos un modelo de enmascaramiento de imágenes (U­Net) y una red neuronal convolucional (CNN) para clasificar los peces amazónicos en las fotografías. Los peces utilizados para generar datos de entrenamiento fueron recolectados y fotografiados en afluentes de bosques inundables de la cuenca alta del río Morona en Loreto, Perú en 2018 y 2019. Las identificaciones de especies en las imágenes de entrenamiento (n = 3.068) fueron verificadas por ictiólogos expertos. Estas imágenes se complementaron con fotografías tomadas de ejemplares adicionales de peces amazónicos alojados en la colección ictiológica del Museo Nacional de Historia Natural del Smithsonian en Washington, DC. Se generó un modelo CNN que identificó 33 géneros de peces con una precisión media del 97,9%. Una mayor disponibilidad de herramientas precisas de reconocimiento de imágenes de peces de agua dulce, como la que se describe aquí, permitirá a los pescadores, las comunidades amazónicas y los "científicos ciudadanos" participar de manera más efectiva en la recopilación y el intercambio de datos de sus territorios para informar las políticas y decisiones de gestión que los afectan directamente.

14.
JOR Spine ; 6(1): e1230, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994457

RESUMO

Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.

15.
Neurosci Biobehav Rev ; 147: 105106, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828163

RESUMO

The number of preclinical and clinical studies evaluating natural products-based management of dementia has gradually increased, with an exponential rise in 2020 and 2021. Keeping this in mind, we examined current trends from 2016 to 2021 in order to assess the growth potential of natural products in the treatment of dementia. Publicly available literature was collected from various databases like PubMed and Google Scholar. Oxidative stress-related targets, NF-κB pathway, anti-tau aggregation, anti-AChE, and A-ß aggregation were found to be common targets and pathways. A retrospective analysis of 33 antidementia natural compounds identified 125 sustainable resources distributed among 65 families, 39 orders, and 7 classes. We found that families such as Berberidaceae, Zingiberaceae, and Fabaceae, as well as orders such as Lamiales, Sapindales, and Myrtales, appear to be important and should be researched further for antidementia compounds. Moreover, some natural products, such as quercetin, curcumin, icariside II, berberine, and resveratrol, have a wide range of applications. Clinical studies and patents support the importance of dietary supplements and natural products, which we will also discuss. Finally, we conclude with the broad scope, future challenges, and opportunities for field researchers.


Assuntos
Produtos Biológicos , Curcumina , Demência , Humanos , Produtos Biológicos/uso terapêutico , Estudos Retrospectivos , Resveratrol , Demência/tratamento farmacológico
16.
J Am Med Inform Assoc ; 30(1): 94-102, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36287639

RESUMO

OBJECTIVE: Acute kidney injury (AKI) is a common complication after pediatric cardiac surgery, and the early detection of AKI may allow for timely preventive or therapeutic measures. However, current AKI prediction researches pay less attention to time information among time-series clinical data and model building strategies that meet complex clinical application scenario. This study aims to develop and validate a model for predicting postoperative AKI that operates sequentially over individual time-series clinical data. MATERIALS AND METHODS: A retrospective cohort of 3386 pediatric patients extracted from PIC database was used for training, calibrating, and testing purposes. A time-aware deep learning model was developed and evaluated from 3 clinical perspectives that use different data collection windows and prediction windows to answer different AKI prediction questions encountered in clinical practice. We compared our model with existing state-of-the-art models from 3 clinical perspectives using the area under the receiver operating characteristic curve (ROC AUC) and the area under the precision-recall curve (PR AUC). RESULTS: Our proposed model significantly outperformed the existing state-of-the-art models with an improved average performance for any AKI prediction from the 3 evaluation perspectives. This model predicted 91% of all AKI episodes using data collected at 24 h after surgery, resulting in a ROC AUC of 0.908 and a PR AUC of 0.898. On average, our model predicted 83% of all AKI episodes that occurred within the different time windows in the 3 evaluation perspectives. The calibration performance of the proposed model was substantially higher than the existing state-of-the-art models. CONCLUSIONS: This study showed that a deep learning model can accurately predict postoperative AKI using perioperative time-series data. It has the potential to be integrated into real-time clinical decision support systems to support postoperative care planning.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Humanos , Criança , Estudos Retrospectivos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Curva ROC , Fatores de Tempo
17.
Neural Process Lett ; : 1-53, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36158520

RESUMO

Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.

18.
J Pers Med ; 12(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35743636

RESUMO

Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70-90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.

19.
Sensors (Basel) ; 22(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746313

RESUMO

Social media platforms have many users who share their thoughts and use these platforms to organize various events collectively. However, different upsetting incidents have occurred in recent years by taking advantage of social media, raising significant concerns. Therefore, considerable research has been carried out to detect any disturbing event and take appropriate measures. This review paper presents a thorough survey to acquire in-depth knowledge about the current research in this field and provide a guideline for future research. We systematically review 67 articles on event detection by sensing social media data from the last decade. We summarize their event detection techniques, tools, technologies, datasets, performance metrics, etc. The reviewed papers mainly address the detection of events, such as natural disasters, traffic, sports, real-time events, and some others. As these detected events can quickly provide an overview of the overall condition of the society, they can significantly help in scrutinizing events disrupting social security. We found that compatibility with different languages, spelling, and dialects is one of the vital challenges the event detection algorithms face. On the other hand, the event detection algorithms need to be robust to process different media, such as texts, images, videos, and locations. We outline that the event detection techniques compatible with heterogeneous data, language, and the platform are still missing. Moreover, the event and its location with a 24 × 7 real-time detection system will bolster the overall event detection performance.


Assuntos
Desastres Naturais , Mídias Sociais , Algoritmos , Humanos
20.
Molecules ; 27(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056884

RESUMO

Deep machine learning is expanding the conceptual framework and capacity of computational compound design, enabling new applications through generative modeling. We have explored the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical space, followed by focusing on an exemplary kinase of interest. Covalent inhibitors experience a renaissance in drug discovery, especially for targeting protein kinases. However, computational design of this class of inhibitors has thus far only been little investigated. To this end, we have devised a computational approach combining fragment-based design and deep generative modeling augmented by three-dimensional pharmacophore screening. This approach is thought to be particularly relevant for medicinal chemistry applications because it combines knowledge-based elements with deep learning and is chemically intuitive. As an exemplary application, we report for Bruton's tyrosine kinase (BTK), a major drug target for the treatment of inflammatory diseases and leukemia, the generation of novel candidate inhibitors with a specific chemically reactive group for covalent modification, requiring only little target-specific compound information to guide the design efforts. Newly generated compounds include known inhibitors and characteristic substructures and many novel candidates, thus lending credence to the computational approach, which is readily applicable to other targets.


Assuntos
Inibidores de Proteínas Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA