RESUMO
Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are responsible for the Common Bacterial Blight (CBB), a major common bean (Phaseolus vulgaris) disease. The pathogenicity of Xcf and Xpp is known to be dependent upon a functional Type III Secretion System (T3SS) allowing the injection of numerous bacterial Type III Effectors (T3Es) into plant cells. T3Es have been described as able to disrupt plant defence and manipulate plant metabolism. In this work we described the transcriptomic response of one susceptible (Flavert) and one resistant (Vezer) cultivars of P. vulgaris to the inoculation of the virulent strain Xcf CFBP4885 or its avirulent T3SS-defective hrcV mutant (CFBP13802). Leaves of both bean cultivars were infiltrated with water or bacterial suspensions. Inoculated leaves were sampled at 24 or 48 h post inoculation (hpi). The experiment was independently repeated three times for total RNA extraction and sequencing analysis. Library construction and total RNA sequencing were performed with BGISEQ-500 at Beijing Genomics Institute (BGI, Hong-Kong), generating an average of 24M of paired-end reads of 100bp per sample. FastQC was used to check reads quality. Mapping analyses were made using a quasi-mapping alignment from Salmon (version 1.2.1) against the Phaseolus vulgaris reference genome (version 2.1), revealing the expression profiles of 36,978 transcripts in leaf tissues. Fastq raw data and count files from 36 samples are available in the Gene Expression Omnibus (GEO) repository of the National Center for Biotechnology Information (NCBI) under the accession number GSE271236. This dataset is a valuable resource to investigate the role of T3Es in subverting the cellular functions of bean.
RESUMO
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Assuntos
Mio-Inositol-1-Fosfato Sintase , Doenças das Plantas , Rhizoctonia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Rhizoctonia/patogenicidade , Rhizoctonia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Mio-Inositol-1-Fosfato Sintase/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Regulação da Expressão Gênica de Plantas , Inositol/metabolismo , Interações Hospedeiro-Patógeno , Ácido Salicílico/metabolismo , Inativação Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismoRESUMO
Secretory trafficking in plant cells is facilitated by SNARE (soluble N-ethylamide-sensitive factor attachment protein receptor) proteins that drive membrane fusion of cargo-containing vesicles. In Arabidopsis, SYNTAXIN OF PLANTS 132 (SYP132) is an evolutionarily ancient SNARE that functions with syntaxins SYP121 and SYP122 at the plasma membrane. Whereas SYP121 and SYP122 mediate overlapping secretory pathways, albeit with differences in their importance in plant-environment interactions, the SNARE SYP132 is absolutely essential for plant development and survival. SYP132 promotes endocytic traffic of the plasma membrane H+-ATPase AHA1 and aquaporin PIP2;1, and it coordinates plant growth and bacterial pathogen immunity through PATHOGENESIS-RELATED1 (PR1) secretion. Yet, little else is known about SYP132 cargoes. Here, we used advanced quantitative Tandem Mass Tagging (TMT) mass spectrometry (MS) combined with immunoblot assays to track native secreted cargo proteins in the leaf apoplast. We found that SYP132 supports a basal level of secretion in Arabidopsis leaves, and its overexpression influences salicylic acid (SA) and jasmonic acid (JA) defence-related cargoes including PR1, PR2, and PR5 proteins. Impairing SYP132 function also suppressed defence-related secretory traffic when challenged with the bacterial pathogen Pseudomonas syringae. Thus, we conclude that, in addition to its role in hormone-related H+-ATPase cycling, SYP132 influences basal plant immunity.
RESUMO
Post-fire regeneration characterizes woody vegetation of the Cerrado. Several species (e.g., from the Fabaceae) can resprout after fire due to the presence of storage bud-bearing belowground structures, such as xylopodia, having the capacity to rapidly allocate resources for the formation of new aboveground shoots, an advantage in fire-prone ecosystems. Therefore, we evaluated the morphoanatomical structure of the belowground organs, buds and their storage to elucidate fire-related functional traits in relation to regeneration. Besides the strong capacity of plants with xylopodia to resprout and/or their associated root suckers to propagate laterally, they also provide protection against pathogens, through the presence of defence compounds. We evaluated the morphoanatomy and performed histochemical tests with the belowground organs of eight legume species collected in open savannas in Central Brazil. Two species presented a taproot tuber and the six remaining species had a xylopodium as belowground organ. All xylopodia had buds on their upper portion. These organs were basically composed of lignified tissue, containing defence (phenolic compounds and lipidic substances), and storage (starch) substances. All xylopodia were associated to tuberous roots, and in two species these roots were also root suckers. Thus, the presence of belowground storage organs, in combination with stored defence compounds, likely facilitates the persistence of the investigated legumes in fire-prone ecosystems.
RESUMO
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
RESUMO
Plant parasitic nematodes (PPNs), such as Meloidogyne spp., Heterodera spp. and Pratylenchus spp., are obligate parasites on a wide range of crops, causing significant agricultural production losses worldwide. These PPNs mainly feed on and within roots, impairing both the below-ground and the above-ground parts, resulting in reduced plant performance. Plants have developed a multi-component defence mechanism against diverse pathogens, including PPNs. Several natural molecules, ranging from cell wall components to secondary metabolites, have been found to protect plants from PPN attack by conferring nematode-specific resistance. Recent advances in omics analytical tools have encouraged researchers to shed light on nematode detection and the biochemical defence mechanisms of plants during nematode infection. Here, we discuss the recent progress on revealing the nematode-associated molecular patterns (NAMPs) and their receptors in plants. The biochemical defence responses of plants, comprising cell wall reinforcement; reactive oxygen species burst; receptor-like cytoplasmic kinases; mitogen-activated protein kinases; antioxidant activities; phytohormone biosynthesis and signalling; transcription factor activation; and the production of anti-PPN phytochemicals are also described. Finally, we also examine the role of epigenetics in regulating the transcriptional response to nematode attack. Understanding the plant defence mechanism against PPN attack is of paramount importance in developing new, effective and sustainable control strategies.
RESUMO
Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.
RESUMO
Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle's eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host-symbiont co-diversification, or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity, and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.
RESUMO
Understanding how pathogens defend themselves against host defence mechanisms, such as hydrogen peroxide (H2O2) production, is crucial for comprehending fungal infections. H2O2 poses a significant threat to invading fungi due to its potent oxidizing properties. Our research focuses on the hemibiotrophic fungal wheat pathogen Zymoseptoria tritici, enabling us to investigate host-pathogen interactions. We examined two catalase-peroxidase (CP) genes, ZtCpx1 and ZtCpx2, to elucidate how Z. tritici deals with host-generated H2O2 during infection. Our analysis revealed that ZtCpx1 was up-regulated during biotrophic growth and asexual spore formation in vitro, while ZtCpx2 showed increased expression during the transition from biotrophic to necrotrophic growth and in-vitro vegetative growth. Deleting ZtCpx1 increased the mutant's sensitivity to exogenously added H2O2 and significantly reduced virulence, as evidenced by decreased Septoria tritici blotch symptom severity and fungal biomass production. Reintroducing the wild-type ZtCpx1 allele with its native promoter into the mutant strain restored the observed phenotypes. While ZtCpx2 was not essential for full virulence, the ZtCpx2 mutants exhibited reduced fungal biomass development during the transition from biotrophic to necrotrophic growth. Moreover, both CP genes act synergistically, as the double knock-out mutant displayed a more pronounced reduced virulence compared to ΔZtCpx1. Microscopic analysis using fluorescent proteins revealed that ZtCpx1 was localized in the peroxisome, indicating its potential role in managing host-generated reactive oxygen species during infection. In conclusion, our research sheds light on the crucial roles of CP genes ZtCpx1 and ZtCpx2 in the defence mechanism of Z. tritici against host-generated hydrogen peroxide.
Assuntos
Ascomicetos , Catalase , Peróxido de Hidrogênio , Doenças das Plantas , Triticum , Ascomicetos/patogenicidade , Ascomicetos/enzimologia , Ascomicetos/genética , Triticum/microbiologia , Virulência , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Doenças das Plantas/microbiologia , Catalase/metabolismo , Catalase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Peroxidases/metabolismo , Peroxidases/genética , Interações Hospedeiro-PatógenoRESUMO
Autophagy, an intracellular degradation process, has emerged as a crucial innate immune response against various plant pathogens, including viruses. Tomato spotted wilt orthotospovirus (TSWV) is a highly destructive plant pathogen that infects over 1000 plant species and poses a significant threat to global food security. However, the role of autophagy in defence against the TSWV pathogen, and whether the virus counteracts this defence, remains unknown. In this study, we report that autophagy plays an important role in antiviral defence against TSWV infection; however, this autophagy-mediated defence is counteracted by the viral effector NSs. Transcriptome profiling revealed the up-regulation of autophagy-related genes (ATGs) upon TSWV infection. Blocking autophagy induction by chemical treatment or knockout/down of ATG5/ATG7 significantly enhanced TSWV accumulation. Notably, the TSWV nucleocapsid (N) protein, a major component of the viral replication unit, strongly induced autophagy. However, the TSWV nonstructural protein NSs was able to effectively suppress N-induced autophagy in a dose-dependent manner. Further investigation revealed that NSs inhibited ATG6-mediated autophagy induction. These findings provide new insights into the defence role of autophagy against TSWV, a representative segmented negative-strand RNA virus, as well as the tospoviral pathogen counterdefence mechanism.
Assuntos
Autofagia , Doenças das Plantas , Tospovirus , Tospovirus/fisiologia , Tospovirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Solanum lycopersicum/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Nicotiana/virologia , Nicotiana/imunologia , Nicotiana/genéticaRESUMO
Consumers can influence the competitive outcomes of prey species in various ways. Modern coexistence theory predicts that consumers can promote prey coexistence by preferably targeting a competitively superior one, thereby reducing fitness differences. However, previous studies yielded mixed conclusions. In this study, we tested the hypothesis that a parasitic annual plant, Cuscuta campestris, facilitates the coexistence of two common annual plants. We performed field surveys and parasitism experiments to parameterize a plant competition dynamics model. The model suggested a competition-defence tradeoff: the legume Lespedeza striata was a better competitor than the grass Setaria faberi, while it was more susceptible to the parasite. Moreover, an empirical host-parasite dynamics model, extended from the plant competition model, predicted their coexistence within broad, biologically reasonable ranges of parameters. This work provides field evidence of the coexisting-promoting role of a parasitic plant, as caused by stabilising feedback between host and parasite densities.
Assuntos
Cuscuta , Interações Hospedeiro-Parasita , Cuscuta/fisiologia , Modelos Biológicos , Animais , Dinâmica Populacional , Fabaceae/parasitologia , Fabaceae/fisiologiaRESUMO
Diplodia sapinea causes Diplodia tip blight (DTB) and is recognised as an opportunistic necrotrophic pathogen affecting conifers. While DTB is associated with abiotic stress, the impact of biotic stress in the host on D. sapinea's lifestyle shift is unknown. Observed co-occurrences of D. sapinea and Melampsora pinitorqua, causing pine twisting rust on Scots pine (Pinus sylvestris), instigated an investigation into their interaction with and influence on the defence mechanisms of the host. We hypothesised that M. pinitorqua infections predispose the trees to D. sapinea by stressing the host and altering the shoot metabolites. Pines in a plantation were sampled over time to study pathogen biomass and host metabolites. Symptoms of both pathogens were consistent over years, and the preceding season's symptoms affected the metabolic profiles pre-infection and M. pinitorqua's proliferation. Symptoms of M. pinitorqua altered shoot metabolites more than fungal biomass, with co-symptomatic trees exhibiting elevated M. pinitorqua biomass. Specific phenolic compounds had a strong positive association with the shoot symptom × D. sapinea interaction. D. sapinea's biomass presymptoms was independent of previous disease symptoms and infection by M. pinitorqua. Some trees showed disease tolerance, with delayed rust infections and minimal DTB symptoms. Further investigations on this trait are needed.
RESUMO
Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.
RESUMO
Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.
RESUMO
BACKGROUND: India's oilseed economy falls short of self-sufficiency and is supplemented by huge imports every year. Increasing national productivity of the major oilseeds is confronted with yield losses due to diverse biotic and abiotic stresses. The productivity of Indian mustard (Brassica juncea Linnaeus), belonging to the family Brassicaceae, is significantly reduced due to damage caused by mustard aphids (Lipaphis erysimi Kaltenbach, Hemiptera: Aphididae). Rapid colonization by the nymphs makes it difficult to protect the crop through agrochemicals. Aphids release effector molecules to modulate the host-defence responses. Glucosinolates (GSLs) extensively found in Brassicaceae family, are hydrolysed by myrosinase into toxic compounds that deter herbivore insects. METHODS: Here, we investigated the differential activation of the glucosinolate-myrosinase pathway in mustard manifesting susceptibility and resistance to different aphid species. Mustard plants were challenged by two different aphid species mustard aphid and cowpea aphid (Aphis craccivora Koch, Hemiptera: Aphididae) leading to complete host-susceptibility in one case and resistance in the other, respectively. Differential regulation of the GSL biosynthetic pathway and myrosinase activity was assessed by gene expression study and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC- QToF-ESL-MS). RESULTS: Gene expression study identified selective transcriptional attenuation of the key GSL biosynthetic and myrosinase gene in mustard when challenged with mustard aphid. In contrary, the activation of GSL biosynthetic genes in conjunction with myrosinase at the transcriptional level was profound in mustard, when challenged with cowpea aphid. UPLC-MS analysis showed higher turnover in the hydrolysis of glucosinolates by myrosinase which led to concomitant generation of glucose as byproduct in response to cowpea aphid in mustard plants. CONCLUSION: GSL-myrosinase pathway is specifically attenuated by the successful aphid species in mustard and thus plays a pivotal role in determining the outcome of the B. juncea-aphid interaction. The results open up a new genetic modification strategy for developing resistance against aphids.
Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Mostardeira , Glucosinolatos/metabolismo , Afídeos/fisiologia , Animais , Mostardeira/genética , Mostardeira/metabolismo , Mostardeira/parasitologia , Interações Hospedeiro-Parasita , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , N-Glicosil Hidrolases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Herbivoria , ÍndiaRESUMO
The performance of herbivorous animals depends on the nutritional and defensive traits of the plants they consume. The uptake and deposition of biogenic silicon in plant tissues is arguably the most basic and ubiquitous anti-herbivore defence used by plants, especially grasses. We conducted meta-analyses of 150 studies reporting how vertebrate and invertebrate herbivores performed when feeding on silicon-rich plants relative to those feeding on low-silicon plants. Silicon levels were 52% higher and 32% more variable in silicon-rich plants compared to plants with low silicon, which resulted in an overall 33% decline in herbivore performance. Fluid-feeding herbivore performance was less adversely impacted (-14%) than tissue-chewing herbivores, including mammals (-45%), chewing arthropods (-33%) and plant-boring arthropods (-39%). Fluid-feeding arthropods with a wide diet breadth or those feeding on perennial plant species were mostly unaffected by silicon defences. Unlike many other plant defences, where diet specialisation often helps herbivores overcome their effects, silicon negatively impacts chewing herbivores regardless of diet breadth. We conclude that silicon defences primarily target chewing herbivores and impact vertebrate and invertebrate herbivores to a similar degree.
Assuntos
Herbivoria , Silício , Animais , Artrópodes/fisiologia , Comportamento Alimentar , Invertebrados/fisiologia , Plantas/metabolismo , Silício/metabolismo , Vertebrados/fisiologiaRESUMO
BACKGROUND: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. OBJECTIVES: We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. METHODS: We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. RESULTS: We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. CONCLUSIONS: We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites.
RESUMO
When risk is unpredictable, organisms may evolve induced defenses, which are activated after an indication of increased risk. In colonies with behavioural specialization, investment in defence may not be uniformly beneficial among group members. Instead, it should depend on the individual's likelihood of participating in defence. The ant Temnothorax longispinosus uses venom to defend against raids by the social parasite Temnothorax americanus. We tested whether T. longispinosus upregulate investment in venom after experiencing a raid, investigating the relationship between venom volume and worker behavioural caste. Overall, raided colonies had more venom per capita than unraided colonies. When divided into behavioural castes, foragers had more venom after experiencing a raid, while nurses did not. These results demonstrate that T. longispinosus have an induced chemical defence against parasitic raids. However, instead of this defence being deployed uniformly among all workers, the induction of the defence depends on the behavioural caste, and therefore age, of the worker, implying that plasticity in venom production increases with age. Since older social insect workers tend to perform riskier tasks, inducibility may align with an increase in expected risk of death, especially if foragers are more likely to defend the colony against parasites than younger workers.
Assuntos
Formigas , Animais , Formigas/fisiologia , Formigas/parasitologia , Comportamento Animal/fisiologia , Venenos de Formiga , Fatores Etários , Comportamento SocialRESUMO
Caterpillar feeding immediately triggers the release of volatile compounds stored in the leaves of cotton plants. Additionally, after 1 d of herbivory, the leaves release other newly synthesised volatiles. We investigated whether these volatiles affect chemical defences in neighbouring plants and whether such temporal shifts in emissions matter for signalling between plants. Undamaged receiver plants were exposed to volatiles from plants infested with Spodoptera caterpillars. For receiver plants, we measured changes in defence-related traits such as volatile emissions, secondary metabolites, phytohormones, gene expression, and caterpillar feeding preference. Then, we compared the effects of volatiles emitted before and after 24 h of damage on neighbouring plant defences. Genes that were upregulated in receiver plants following exposure to volatiles from damaged plants were the same as those activated directly by herbivory on a plant. Only volatiles emitted after 24 h of damage, including newly produced volatiles, were found to increase phytohormone levels, upregulate defence genes, and enhance resistance to caterpillars. These results indicate that the defence induction by volatiles is a specific response to de novo synthesised volatiles, suggesting that these compounds are honest signals of herbivore attack. These findings point to an adaptive origin of airborne signalling between plants.
RESUMO
The surge in multidrug-resistant bacteria against conventional antibiotics is a rapidly developing global health crisis necessitating novel infection management strategies. Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), offer a promising alternative to traditional antibiotics, but their practical translation is limited by their susceptibility to proteases and potential off-site cytotoxicity. In this paper, we investigate the feasibility of using gelatin emulsion gels (GELs), prepared using a water-in-oil (W/O) method, for the delivery of HDPs DJK-5 and IDR-1018 to improve their clinical utility. DJK-5-loaded GELs exhibited complete eradication of planktonic Methicillin-resistant Staphylococcus aureus (MRSA) at 4 - and 24-h intervals. Similarly, IDR-1018-loaded GELs demonstrated almost complete killing of MRSA and Escherichia coli (E. coli) after 4 h. Importantly, none of the GEL formulations investigated exhibited in vitro cytotoxicity. Overall, these HDP loaded GELs are a promising solution for the treatment of antibiotic-resistant infections.