RESUMO
In the quest for sustainable and renewable energy sources, researchers and engineers have explored innovative technologies to harvest energy from various environmental sources. Dielectric elastomer generators (DEGs) with high energy harvesting performance have been proven to be promising energy collectors, but achieving a high dielectric constant (ε') and low electrical conductivity (EC) under high electric fields of dielectric elastomer (DE) simultaneously is a struggle, which poses significant challenges. In this study, high-content carboxyl group-grafted liquid polybutadiene (HCPB) is synthesized and then adopted as an organic dielectric filler to blend and cocross-link with a butadiene rubber (BR) matrix to prepare DE composites with high energy harvesting performance. The introduction of carboxyl groups enhances polarization while trapping free Al3+ in the matrix, which revolutionarily achieves a significant increase in ε' under extremely low EC. Ultimately, the contradiction between increased ε' and decreased EC under high electric fields is reconciled, resulting in a 30 HCPB/BR composite with high energy density (w = 91.9 mJ/cm3) and fine power conversion efficiency (PCE = 24.1%). This advancement paves the way for the development of HCPB/BR composite-based DEGs with enhanced ε' and energy harvesting performance.
RESUMO
Dielectric elastomer generator (DEG), which consists of a dielectric elastomer (DE) film sandwiched between two flexible electrodes (FEs), has the advantages of lightweight, high energy density, and high energy conversion efficiency, providing a simple and feasible solution for harvesting energy from human motion or nature. As crucial constituents of DEG, FEs are expected to possess excellent conductivity and compliance. Nevertheless, there is currently no quantitative characterization method for FE compliance. In addition, the impact mechanism of FE compliance on the energy harvesting performance and fatigue life of the DEG remains unclear. In this study, the dynamic mechanical property (DMP) was used to assess the compliance of FEs, and the quantitative characterization method of FE compliance was proposed. A series of silicone rubber electrodes (SREs) with different DMPs and compliance were designed and prepared, and the impact mechanism of FE compliance on the energy harvesting stability and fatigue life of the DEG was investigated. The results indicate that the key to achieving excellent FE compliance lies in reducing the difference in the magnitude of the complex modulus and phase angle between the FEs and DE, which can significantly reduce interfacial friction and extend the fatigue life of DEG. Benefiting from the enhanced FE compliance, the fatigue life and full-life energy density of the DEG device increase by 20.3 times and 26.4 times, respectively, compared with those of the commonly used carbon-based electrodes.
RESUMO
Dielectric elastomer generators (DEGs) with high generated energy density and high conversion efficiency are of great interest. Among several dielectric elastomers (DEs), silicone elastomer filled with ceramic fillers have been extensively studied for their high elasticity, insulation, and permittivity. However, the stretched breakdown strength (Ebs ) of such composites decreases significantly under large strain, thus sharply reduces its energy harvesting performances. In this study, a polar rubber-based dielectric (GNBR) is synthetized and creatively used as "soft filler" for silicone elastomer. Benefiting from the deformability under stretching and its inherent strong interface bonding with silicone elastomer, this soft filler effectively avoids the formation of weak interface under large strain and reduces the local field strength of interface area. As expected, the composite filled with soft filler (GNBR/PMVS) shows enhanced Ebs of 2.8 times that of composite with traditional hard filler (TiO2 /PMVS) under equibiaxial strain of 200%. As a result, GNBR/PMVS composite exhibits maximum energy density of 130.5 mJ g-1 with up-to-date highest power conversion efficiency of reported DEG (44.5%). The findings will provide new insights in the rational design of DE composites characterized by high stretched breakdown strength for advanced energy harvesting system.
RESUMO
Soft, low-cost, high-performance generators are highly desirable for harvesting ambient low frequency mechanical energy. Here, a dielectric elastomer nanogenerator (DENG) is reported, which consists of a dielectric elastomer capacitor, an electret electrostatic voltage source, and a charge pump circuit. Under biaxial stretching, DENG can convert tensile mechanical energy into electrical power without any external power supply. Different from traditional DEG with the charge outward transfer in direct current (DC), the DENG works based on shuttle movement of internal charges in an alternating current (AC). Through alternating current (AC) method, the charge density of the DENG can reach 26 mC m-2 per mechanical cycle, as well as energy density of up to 140 mJ g-1 . Due to the all-solid-state structure without air gap, the DENG is capable of working stably under different ambient humidity (20 RH%-100 RH%). To demonstrate the applications, a water wave harvester based on the DENG is constructed. The integrated device powers a sensing communication module for self-powered remote weather monitoring, showing the potential application in ocean wave energy harvesting.
RESUMO
This paper introduces the analysis and design of a wave energy converter (WEC) that is equipped with a novel kind of electrostatic power take-off system, known as dielectric elastomer generator (DEG). We propose a modelling approach which relies on the combination of nonlinear potential-flow hydrodynamics and electro-hyperelastic theory. Such a model makes it possible to predict the system response in operational conditions, and thus it is employed to design and evaluate a DEG-based WEC that features an effective dynamic response. The model is validated through the design and test of a small-scale prototype, whose dynamics is tuned with waves at tank-scale using a set of scaling rules for the DEG dimensions introduced here in order to comply with Froude similarity laws. Wave-tank tests are conducted in regular and irregular waves with a functional DEG system that is controlled using a realistic prediction-free strategy. Remarkable average performance in realistically scaled sea states has been recorded during experiments, with peaks of power output of up to 3.8 W, corresponding to hundreds of kilowatts at full-scale. The obtained results demonstrated the concrete possibility of designing DEG-based WEC devices that are conceived for large-scale electrical energy production.
RESUMO
Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (â¼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm3 was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.