Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732955

RESUMO

This paper proposes a robust tracking control method for wheeled mobile robot (WMR) against uncertainties, including wind disturbances and slipping. Through the application of the differential flatness methodology, the under-actuated WMR model is transformed into a linear canonical form, simplifying the design of a stabilizing feedback controller. To handle uncertainties from wheel slip and wind disturbances, the proposed feedback controller uses sliding mode control (SMC). However, increased uncertainties lead to chattering in the SMC approach due to higher control inputs. To mitigate this, a boundary layer around the switching surface is introduced, implementing a continuous control law to reduce chattering. Although increasing the boundary layer thickness reduces chattering, it may compromise the robustness achieved by SMC. To address this challenge, an active disturbance rejection control (ADRC) is integrated with boundary layer sliding mode control. ADRC estimates lumped uncertainties via an extended state observer and eliminates them within the feedback loop. This combined feedback control method aims to achieve practical control and robust tracking performance. Stability properties of the closed-loop system are established using the Lyapunov theory. Finally, simulations and experimental results are conducted to compare and evaluate the efficiency of the proposed robust tracking controller against other existing control methods.

2.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276398

RESUMO

In this paper, we propose a novel distributed algorithm based on model predictive control and alternating direction multiplier method (DMPC-ADMM) for cooperative trajectory planning of quadrotor swarms. First, a receding horizon trajectory planning optimization problem is constructed, in which the differential flatness property is used to deal with the nonlinear dynamics of quadrotors while we design a relaxed form of the discrete-time control barrier function (DCBF) constraint to balance feasibility and safety. Then, we decompose the original trajectory planning problem by ADMM and solve it in a fully distributed manner with peer-to-peer communication, which induces the quadrotors within the communication range to reach a consensus on their future trajectories to enhance safety. In addition, an event-triggered mechanism is designed to reduce the communication overhead. The simulation results verify that the trajectories generated by our method are real-time, safe, and smooth. A comprehensive comparison with the centralized strategy and several other distributed strategies in terms of real-time, safety, and feasibility verifies that our method is more suitable for the trajectory planning of large-scale quadrotor swarms.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38164100

RESUMO

The multivariable tumor-growth dynamic model has been widely used to describe the inhibition of tumor-cells proliferation under the simultaneous infusion of multiple chemotherapeutic drugs. In this article, a nonlinear optimal (H-infinity) control method is developed for the multi-variable tumor-growth model. First, differential flatness properties are proven for the associated state-space description. Next, the state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instant around a time-varying operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. For the approximately linearized model of the system a stabilizing H-infinity feedback controller is designed. To compute the controller's gains an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach.

4.
ISA Trans ; 144: 482-489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953078

RESUMO

Wheeled mobile robots (WMRs) have a wide range of applications in logistics transportation and industrial productions, among which the motion control has always been one of the hot spots in the current WMR researches. However, most of previous designed controllers assumed that the WMR motion had no slippage. Ignoring the slippage factors usually results in a decrease in control performance and even leads to unstable motion. To address such a challenge, a kinematic model with differential flatness is established through dynamic feedback-linearization, which comprehensively considers the multidirectional slippage of mobile robot, including longitudinal and steering slippage. Subsequently, benefited from the one-to-one mapping of states and inputs to flat outputs in differential flat system, an adaptive robust control (ARC) method is proposed to stabilize the system. Different from previous robust control studies, even if the knowledge of the upper bound of system uncertainties is unknown in advance, the proposed adaptive robust controller can still achieve satisfying performance by adaptive estimation of the upper bound of system uncertainties. The effectiveness and feasibility of the proposed method are confirmed by comparative experiments on WMR with slippage disturbance.

5.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139512

RESUMO

In this article, we present an innovative approach to 2D visual servoing (IBVS), aiming to guide an object to its destination while avoiding collisions with obstacles and keeping the target within the camera's field of view. A single monocular sensor's sole visual data serves as the basis for our method. The fundamental idea is to manage and control the dynamics associated with any trajectory generated in the image plane. We show that the differential flatness of the system's dynamics can be used to limit arbitrary paths based on the number of points on the object that need to be reached in the image plane. This creates a link between the current configuration and the desired configuration. The number of required points depends on the number of control inputs of the robot used and determines the dimension of the flat output of the system. For a two-wheeled mobile robot, for instance, the coordinates of a single point on the object in the image plane are sufficient, whereas, for a quadcopter with four rotating motors, the trajectory needs to be defined by the coordinates of two points in the image plane. By guaranteeing precise tracking of the chosen trajectory in the image plane, we ensure that problems of collision with obstacles and leaving the camera's field of view are avoided. Our approach is based on the principle of the inverse problem, meaning that when any point on the object is selected in the image plane, it will not be occluded by obstacles or leave the camera's field of view during movement. It is true that proposing any trajectory in the image plane can lead to non-intuitive movements (back and forth) in the Cartesian plane. In the case of backward motion, the robot may collide with obstacles as it navigates without direct vision. Therefore, it is essential to perform optimal trajectory planning that avoids backward movements. To assess the effectiveness of our method, our study focuses exclusively on the challenge of implementing the generated trajectory in the image plane within the specific context of a two-wheeled mobile robot. We use numerical simulations to illustrate the performance of the control strategy we have developed.

6.
Nonlinear Dyn ; 109(1): 57-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221526

RESUMO

The COVID-19 pandemic confronts governments and their health systems with great challenges for disease management. In many countries, hospitalization and in particular ICU occupancy is the primary measure for policy makers to decide on possible non-pharmaceutical interventions. In this paper a combined methodology for the prediction of COVID-19 case numbers, case-specific hospitalization and ICU admission rates as well as hospital and ICU occupancies is proposed. To this end, we employ differential flatness to provide estimates of the states of an epidemiological compartmental model and estimates of the unknown exogenous inputs driving its nonlinear dynamics. A main advantage of this method is that it requires the reported infection cases as the only data source. As vaccination rates and case-specific ICU rates are both strongly age-dependent, specifically an age-structured compartmental model is proposed to estimate and predict the spread of the epidemic across different age groups. By utilizing these predictions, case-specific hospitalization and case-specific ICU rates are subsequently estimated using deconvolution techniques. In an analysis of various countries we demonstrate how the methodology is able to produce real-time state estimates and hospital/ICU occupancy predictions for several weeks thus providing a sound basis for policy makers.

7.
Nonlinear Dyn ; 106(1): 1111-1125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511723

RESUMO

The currently ongoing COVID-19 pandemic confronts governments and their health systems with great challenges for disease management. Epidemiological models play a crucial role, thereby assisting policymakers to predict the future course of infections and hospitalizations. One difficulty with current models is the existence of exogenous and unmeasurable variables and their significant effect on the infection dynamics. In this paper, we show how a method from nonlinear control theory can complement common compartmental epidemiological models. As a result, one can estimate and predict these exogenous variables requiring the reported infection cases as the only data source. The method allows to investigate how the estimates of exogenous variables are influenced by non-pharmaceutical interventions and how imminent epidemic waves could already be predicted at an early stage. In this way, the concept can serve as an "epidemometer" and guide the optimal timing of interventions. Analyses of the COVID-19 epidemic in various countries demonstrate the feasibility and potential of the proposed approach. The generic character of the method allows for straightforward extension to different epidemiological models.

8.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887264

RESUMO

In order to solve the trajectory tracking task in a wheeled mobile robot (WMR), a dynamic three-level controller is presented in this paper. The controller considers the mechanical structure, actuators, and power stage subsystems. Such a controller is designed as follows: At the high level is a dynamic control for the WMR (differential drive type). At the medium level is a PI current control for the actuators (DC motors). Lastly, at the low level is a differential flatness-based control for the power stage (DC/DC Buck power converters). The feasibility, robustness, and performance in closed-loop of the proposed controller are validated on a DDWMR prototype through Matlab-Simulink, the real-time interface ControlDesk, and a DS1104 board. The obtained results are experimentally assessed with a hierarchical tracking controller, recently reported in literature, that was also designed on the basis of the mechanical structure, actuators, and power stage subsystems. Although both controllers are robust when parametric disturbances are taken into account, the dynamic three-level tracking controller presented in this paper is better than the hierarchical tracking controller reported in literature.

9.
ISA Trans ; 94: 174-186, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31047643

RESUMO

This paper presents a two-stage cooperative path planner for multiple autonomous underwater vehicles operating in dynamic environment. In case of static environment, global Legendre pseudospectral method is employed for collision-free paths of vehicles for the purpose of minimum time consumption and simultaneous arrival. Moreover, in order to keep the multiple autonomous underwater vehicles safe from collisions on the path segments connecting two adjacent control nodes, an adaptive intermediate knots insertion algorithm is introduced. In the on-line planning stage, the local re-planning strategy aims at avoiding collisions with unexpected dynamic obstacles by two consecutive avoidance maneuvers, and the differential flatness property of autonomous underwater vehicle is utilized, which can help the vehicles react fast enough to avoid moving obstacles.

10.
Cogn Neurodyn ; 8(6): 465-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26396646

RESUMO

A synchronizing control scheme for coupled neural oscillators of the FitzHugh-Nagumo type is proposed. Using differential flatness theory the dynamical model of two coupled neural oscillators is transformed into an equivalent model in the linear canonical (Brunovsky) form. A similar linearized description is succeeded using differential geometry methods and the computation of Lie derivatives. For such a model it becomes possible to design a state feedback controller that assures the synchronization of the membrane's voltage variations for the two neurons. To compensate for disturbances that affect the neurons' model as well as for parametric uncertainties and variations a disturbance observer is designed based on Kalman Filtering. This consists of implementation of the standard Kalman Filter recursion on the linearized equivalent model of the coupled neurons and computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. After estimating the disturbance terms in the neurons' model their compensation becomes possible. The performance of the synchronization control loop is tested through simulation experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA